ddply - 错误“'names'属性[]必须与vector []”的长度相同时常见的错误?

时间:2014-10-16 15:36:36

标签: r attributes plyr names

我知道有一些线程(12)已经有了它并且我已经阅读了它们,但我仍然没有找到我的问题。

错误似乎是“随机”发生的,即使我确定它不是,但我可能只是不知道,何时。

因此我无法提供一个最小的例子,因为我还找不到“模式”。

但基本上我总是使用

hourly <- ddply(set, c("Date", "Hour"), summarise, avg = mean(Value))

导致

Error: 'names' attribute [11] must be the same length as the vector [1]

traceback()提供

> traceback()
6: stop(list(message = "Attribut 'names' [11] muss dieselbe Länge haben wie der Vektor [1]", 
       call = NULL, cppstack = NULL))
5: .Call("plyr_loop_apply", PACKAGE = "plyr", n, f)
4: loop_apply(n, do.ply)
3: llply(.data = .data, .fun = .fun, ..., .progress = .progress, 
       .inform = .inform, .parallel = .parallel, .paropts = .paropts)
2: ldply(.data = pieces, .fun = .fun, ..., .progress = .progress, 
       .inform = .inform, .parallel = .parallel, .paropts = .paropts)
1: ddply(set, c("Date", "Hour"), summarise, avg = mean(Value))

数据帧的str():

> str(set)
'data.frame':   2155 obs. of  16 variables:
 $ T_Stamp : POSIXlt, format: "2013-06-18 09:01:00" "2013-06-18 09:02:00" "2013-06-18 09:03:00" ...
 $ Date    : Date, format: "2013-06-18" "2013-06-18" "2013-06-18" ...
 $ Time    : num  0.376 0.376 0.377 0.378 0.378 ...
 $ Year    : int  2013 2013 2013 2013 2013 2013 2013 2013 2013 2013 ...
 $ Month   : int  6 6 6 6 6 6 6 6 6 6 ...
 $ Day     : int  18 18 18 18 18 18 18 18 18 18 ...
 $ Hour    : int  9 9 9 9 9 9 9 9 9 9 ...
 $ Min     : int  1 2 3 4 5 6 7 8 9 10 ...
 $ Customer: chr  "1" "1" "1" "1" ...
 $ Property: chr  "1" "1" "1" "1" ...
 $ Serial  : Factor w/ 13 levels "000D6F00010B723F",..: 9 9 9 9 9 9 9 9 9 9 ...
 $ Sensor  : chr  "AirCon" "AirCon" "AirCon" "AirCon" ...
 $ ID      : Factor w/ 44 levels "300","301","302",..: 30 30 30 30 30 30 30 30 30 30 ...
 $ Unit    : chr  "Total Active Power" "Total Active Power" "Total Active Power" "Total Active   Power" ...
 $ Value   : num  68 68.2 68.2 67.7 68.5 ...
 $ Hourf   : Factor w/ 13 levels "9","10","11",..: 1 1 1 1 1 1 1 1 1 1 ...

当使用ddply进行汇总时,有没有人知道一个人可以做的常见错误(正如我为计算方法所做的那样)?

0 个答案:

没有答案