async_receive()
的boost::asio
文档声明它支持“一次性接收到多个缓冲区”,虽然我可以对此进行编码,但我实际上无法看到(或者如果)它有效。
我们的情况是,我们的某个供应商每秒向我们发送数千个UDP数据包,足以让我们在某些情况下看到“收到丢弃的数据包”。
如果我们真的可以在一个async_receive()
调用中填充多个缓冲区,那将是理想的,但在测试期间,似乎即使指定了多个缓冲区,也仅为一个数据报调用处理程序。
我已经包含了我的测试代码,对不起它是如此冗长,但我需要灵活地监听多个接口/多播。
#include <boost/asio.hpp>
#include <boost/thread.hpp>
#include <boost/lexical_cast.hpp>
#include <memory>
#include <algorithm>
#include <vector>
#include <string>
#include <cstdint>
// configuration options...
std::string nic;
std::string mc;
uint16_t port = 0;
uint16_t buffer_size = 0;
uint32_t socket_buffer_size = 0;
uint32_t scat_cnt = 1;
// The raw data buffer
std::vector<uint8_t> buffer;
// The scatter/gather buffer
std::vector<boost::asio::mutable_buffer> gather_buffer;
boost::asio::io_service svc;
std::unique_ptr<boost::asio::ip::udp::socket> socket_;
size_t messages_received = 0;
size_t bytes_received = 0;
bool parse_command_line(std::vector<std::string> command_line);
void on_receive(const boost::system::error_code& ec, size_t bytes)
{
if(!ec)
{
socket_->async_receive(
gather_buffer,
[] (const boost::system::error_code& ec, size_t bytes)
{
on_receive(ec, bytes);
});
++messages_received;
bytes_received += bytes;
if(0 == messages_received % 1000)
{
std::cout << "Received: " << messages_received << " messages, " << bytes_received << " bytes.\n";
}
}
else
{
std::cout << "Error: " << ec.message() << '\n';
}
}
int main(int argc, char** argv)
{
if(parse_command_line(std::vector<std::string>(argv, argv+argc)))
{
try
{
std::cout << "Resizing segment buffer to: " << buffer_size << std::endl;
buffer.resize(buffer_size * scat_cnt);
for(uint32_t x = 0; x < scat_cnt; ++x)
{
gather_buffer.push_back(
boost::asio::buffer(buffer.data() + (buffer_size * x), buffer_size));
}
std::cout << "Setting up receiving socket." << std::endl;
socket_.reset(new boost::asio::ip::udp::socket(svc));
socket_->open(boost::asio::ip::udp::v4());
socket_->set_option(boost::asio::socket_base::reuse_address(true));
std::cout << "Binding to local NIC: " << nic << std::endl;
socket_->bind(boost::asio::ip::udp::endpoint(boost::asio::ip::address::from_string(nic), port));
boost::asio::socket_base::non_blocking_io no_block(true);
socket_->io_control(no_block);
std::cout << "Setting socket buffer size to " << socket_buffer_size << std::endl;
boost::asio::socket_base::receive_buffer_size sock_bf_sz(socket_buffer_size);
socket_->set_option(sock_bf_sz);
std::cout << "Joining multicast " << mc << " on " << nic << std::endl;
boost::asio::ip::multicast::join_group jg(boost::asio::ip::address_v4::from_string(mc), boost::asio::ip::address_v4::from_string(nic));
socket_->set_option(jg);
std::cout << "Listening..." << std::endl;
socket_->async_receive(
gather_buffer,
[] (const boost::system::error_code& ec, size_t bytes)
{
on_receive(ec, bytes);
});
std::unique_ptr<boost::asio::io_service::work> w(new boost::asio::io_service::work(svc));
std::cout << "Starting boost proactor..." << std::endl;
boost::thread thread([&] () { svc.run(); });
boost::this_thread::sleep_for(boost::chrono::seconds(60));
w.reset();
thread.join();
}
catch(boost::system::error_code& ec)
{
std::cout << "Boost error: " << ec.message() << '\n';
}
catch(...)
{
std::cout << "Unknown Error!\n";
}
}
return 0;
}
bool parse_command_line(std::vector<std::string> command_line)
{
for(size_t idx = 0, max_switches = command_line.size();
idx < max_switches; ++idx)
{
auto& curr = command_line[idx];
std::transform(curr.begin(), curr.end(), curr.begin(), ::tolower);
if(curr == "-nic" && ++idx < max_switches)
{
nic = command_line[idx];
}
else if(curr == "-multicast" && ++idx < max_switches)
{
mc = command_line[idx];
}
else if(curr == "-port" && ++idx < max_switches)
{
port = boost::lexical_cast<uint16_t>(command_line[idx]);
}
else if(curr == "-bfsz" && ++idx < max_switches)
{
buffer_size = boost::lexical_cast<uint16_t>(command_line[idx]);
}
else if(curr == "-sockbfsz" && ++idx < max_switches)
{
socket_buffer_size = boost::lexical_cast<uint32_t>(command_line[idx]);
}
else if(curr == "-scattercnt" && ++idx < max_switches)
{
scat_cnt = boost::lexical_cast<uint32_t>(command_line[idx]);
}
}
std::cout
<< "NIC: " << nic << '\n'
<< "MC: " << mc << '\n'
<< "Port: " << port << '\n'
<< "Segment Size: " << buffer_size << '\n'
<< "Socket Buffer Size: " << socket_buffer_size << '\n'
<< "Scatter/Gather: " << scat_cnt << std::endl;
return
!nic.empty() &&
!mc.empty() &&
port != 0 &&
buffer_size != 0 &&
socket_buffer_size != 0
;
}
答案 0 :(得分:3)
它将接收到多个缓冲区,但您一次永远不会获得多个数据报。这就是recv
的工作原理,我认为如果它的行为突然改变,人们会非常惊讶。收集的目的是将单个数据包拆分为多个缓冲区,如果您希望接收概念上已分段的数据,但这不是用于接收多个缓冲区,则这可能很有用。这基本上是recvmsg
的包装器。
也许尝试不使用boost :: asio?