我使用MATLAB计算逆傅里叶变换:
%Just some constants
k = 3;
mx = 8+0.1*k;
D = 2+0.2*k;
a0 = 1+0.02*k;
b0 = 5+0.05*k;
a1 = 7-0.01*k;
b1 = 8+0.02*k;
syms t u w x
%Formula itself
ifunc = ((b1*b1*w*w+b0^2) / (a1*a1*w*w+a0^2) / (1+w*w));
func = ifourier(ifunc);
func = simplify(subs(func, x, 2));
%?
func
%??
sym(func)
%???
expand(func)
这个逆不具有显式形式,因此MATLAB返回类似
的内容(1428564671643779375*transform::fourier(w^2/(2136610577512923125*w^4 + 2186027028111687669*w^2 + 49416450598764544), w, 2))/pi + (583235942953779200*transform::fourier(1/(2136610577512923125*w^4 + 2186027028111687669*w^2 + 49416450598764544), w, 2))/pi
如文件中所述:
如果ifourier找不到变换的显式表示,它会根据直接傅里叶变换返回结果
非常有帮助,但我如何能够得出答案?