这是过去几天我生命中的祸根。我有许多Pandas Dataframes包含不规则频率的时间序列数据。我尝试将这些对齐到一个数据帧中。
以下是一些代码,包含代表性的数据框,df1
,df2
和df3
(我实际上有n = 5,并希望找到适用于所有{{}的解决方案1}}):
n>2
我知道为什么会出现这个错误,所以我摆脱了# df1, df2, df3 are given at the bottom
import pandas as pd
import datetime
# I can align df1 to df2 easily
df1aligned, df2aligned = df1.align(df2)
# And then concatenate into a single dataframe
combined_1_n_2 = pd.concat([df1aligned, df2aligned], axis =1 )
# Since I don't know any better, I then try to align df3 to combined_1_n_2 manually:
combined_1_n_2.align(df3)
error: Reindexing only valid with uniquely valued Index objects
中的重复索引,然后再试一次:
combined_1_n_2
为什么我收到此错误?即使这有效,它也完全是手工和丑陋的。如何对齐> 2个时间序列并将它们组合在一个数据帧中?
数据:
combined_1_n_2 = combined_1_n_2.groupby(combined_1_n_2.index).first()
combined_1_n_2.align(df3) # But stll get the same error
error: Reindexing only valid with uniquely valued Index objects
答案 0 :(得分:6)
您的具体错误是由于combined_1_n_2
的列名称有重复(两列都将命名为'price')。您可以重命名列,第二个对齐也可以。
另一种方法是链接join
运算符,该运算符合并索引上的帧,如下所示。
In [23]: df1.join(df2, how='outer', rsuffix='_1').join(df3, how='outer', rsuffix='_2')
Out[23]:
price price_1 price_2
2008-06-01 06:03:52.281000 NaN NaN 67.6560
2008-06-01 06:03:52.359000 NaN NaN 67.8750
2008-06-01 06:03:59.614000 62.1250 NaN NaN
2008-06-01 06:03:59.692000 62.2500 NaN NaN
2008-06-01 06:13:34.524000 NaN 241.0625 NaN
2008-06-01 06:13:34.602000 NaN 241.5000 NaN
2008-06-01 06:13:34.848000 NaN NaN 67.8125
2008-06-01 06:13:34.926000 NaN NaN 67.7500
2008-06-01 06:15:05.321000 NaN NaN 67.6875
2008-06-01 06:15:05.399000 NaN 241.3750 NaN
2008-06-01 06:15:05.399000 NaN 241.2500 NaN
2008-06-01 06:15:42.004000 62.2375 NaN NaN
2008-06-01 06:15:42.082000 NaN 241.3750 NaN
2008-06-01 06:15:42.083000 61.9250 NaN NaN
2008-06-01 06:17:01.654000 61.9125 NaN NaN