我有数据会导致多行被绘制,我想在这个行中为这些行添加一个标签。我认为使用下面的例子可以更好地证明这一点,
a = np.array([[ 3.57, 1.76, 7.42, 6.52],
[ 1.57, 1.2 , 3.02, 6.88],
[ 2.23, 4.86, 5.12, 2.81],
[ 4.48, 1.38, 2.14, 0.86],
[ 6.68, 1.72, 8.56, 3.23]])
plt.plot(a[:,::2].T, a[:, 1::2].T, 'r', label='data_a')
plt.legend(loc='best')
正如您在Out [23]中所看到的,该情节产生了5条不同的线条。结果情节看起来像这样
有什么方法可以告诉绘图方法避免多个标签?我不想使用自定义图例(您可以同时指定标签和线条形状)。
答案 0 :(得分:10)
如果我打算经常这样做,我会亲自制作一个小帮手功能;
from matplotlib import pyplot
import numpy
a = numpy.array([[ 3.57, 1.76, 7.42, 6.52],
[ 1.57, 1.2 , 3.02, 6.88],
[ 2.23, 4.86, 5.12, 2.81],
[ 4.48, 1.38, 2.14, 0.86],
[ 6.68, 1.72, 8.56, 3.23]])
def plotCollection(ax, xs, ys, *args, **kwargs):
ax.plot(xs,ys, *args, **kwargs)
if "label" in kwargs.keys():
#remove duplicates
handles, labels = pyplot.gca().get_legend_handles_labels()
newLabels, newHandles = [], []
for handle, label in zip(handles, labels):
if label not in newLabels:
newLabels.append(label)
newHandles.append(handle)
pyplot.legend(newHandles, newLabels)
ax = pyplot.subplot(1,1,1)
plotCollection(ax, a[:,::2].T, a[:, 1::2].T, 'r', label='data_a')
plotCollection(ax, a[:,1::2].T, a[:, ::2].T, 'b', label='data_b')
pyplot.show()
从图例的handles
和labels
中删除重复项(比您拥有的)更简单(和IMO更清晰)的方法是:
handles, labels = pyplot.gca().get_legend_handles_labels()
newLabels, newHandles = [], []
for handle, label in zip(handles, labels):
if label not in newLabels:
newLabels.append(label)
newHandles.append(handle)
pyplot.legend(newHandles, newLabels)
答案 1 :(得分:6)
因此,使用意见建议和另一个问题here,我将在此处留下补救措施
handles, labels = plt.gca().get_legend_handles_labels()
i =1
while i<len(labels):
if labels[i] in labels[:i]:
del(labels[i])
del(handles[i])
else:
i +=1
plt.legend(handles, labels)
新的情节看起来像,
答案 2 :(得分:6)
Numpy解决方案基于上述意愿的回应。
import numpy as np
import matplotlib.pylab as plt
a = np.array([[3.57, 1.76, 7.42, 6.52],
[1.57, 1.20, 3.02, 6.88],
[2.23, 4.86, 5.12, 2.81],
[4.48, 1.38, 2.14, 0.86],
[6.68, 1.72, 8.56, 3.23]])
plt.plot(a[:,::2].T, a[:, 1::2].T, 'r', label='data_a')
handles, labels = plt.gca().get_legend_handles_labels()
假设等标签具有相同的句柄,则获取唯一标签及其各自的索引,这些索引对应于句柄索引。
labels, ids = np.unique(labels, return_index=True)
handles = [handles[i] for i in ids]
plt.legend(handles, labels, loc='best')
plt.show()
答案 3 :(得分:5)
Matplotlib为行集合LineCollection提供了一个很好的界面。代码很简单
> dput(dt)
structure(list(Chromosome = structure(c(1L, 1L, 1L, 1L, 2L, 2L,
2L, 2L, 2L), .Label = c("chr1", "chr2"), class = "factor"), Start = c(0L,
8022945L, 9168284L, 9598904L, 0L, 8022930L, 9168284L, 9598904L,
31392788L), End = c(8022945L, 9168284L, 9598904L, 31392788L,
8022930L, 9168284L, 9598904L, 31392788L, 35402000L), lengthMB = c(8.023,
1.145, 0.431, 21.794, 8.023, 1.145, 0.431, 21.794, 1.164), imba = c(0.026905119,
0.030441784, NA, 0.036011994, 0.026905119, 0.030441784, NA, 0.036011994,
0.029733771), log2 = c(-0.001671481, 0.000601976, -0.024952441,
0.002151497, -0.001671481, 0.000601976, -0.024952441, 0.002151497,
0.003149921), Cn = c(2L, 2L, 2L, 3L, 3L, 2L, 2L, 2L, 2L), mCn = c(1L,
1L, 1L, 1L, 1L, 1L, 1L, 0L, 1L), Cn_ = c(1.99, 2, 1.91, 3.01,
2.89, 1.87, 1.57, 1.87, 2.01)), .Names = c("Chromosome", "Start",
"End", "lengthMB", "imba", "log2", "Cn", "mCn", "Cn_"), class = c("data.table",
"data.frame"), row.names = c(NA, -9L), .internal.selfref = <pointer: 0x26abf68>)
答案 4 :(得分:1)
我会做到这一点:
for i in range(len(a)):
plt.plot(a[i,::2].T, a[i, 1::2].T, 'r', label='data_a' if i==0 else None)
答案 5 :(得分:0)
低技术解决方案是进行两次情节调用。一个绘制你的数据,另一个绘制任何东西但只带有句柄:
a = np.array([[ 3.57, 1.76, 7.42, 6.52],
[ 1.57, 1.2 , 3.02, 6.88],
[ 2.23, 4.86, 5.12, 2.81],
[ 4.48, 1.38, 2.14, 0.86],
[ 6.68, 1.72, 8.56, 3.23]])
plt.plot(a[:,::2].T, a[:, 1::2].T, 'r')
plt.plot([],[], 'r', label='data_a')
plt.legend(loc='best')
结果如下:
答案 6 :(得分:0)
删除重复项的最简单和最 Pythonic 的方法是使用 dict 的键,这些键保证是唯一的。这也确保我们只对每个 (handle, label) 对迭代一次。
handles, labels = plt.gca().get_legend_handles_labels()
# labels will be the keys of the dict, handles will be values
temp = {k:v for k,v in zip(labels, handles)}
plt.legend(temp.values(), temp.keys(), loc='best')
答案 7 :(得分:0)
我找到了解决这个问题的捷径:
a = np.array([[ 3.57, 1.76, 7.42, 6.52],
[ 1.57, 1.2 , 3.02, 6.88],
[ 2.23, 4.86, 5.12, 2.81],
[ 4.48, 1.38, 2.14, 0.86],
[ 6.68, 1.72, 8.56, 3.23]])
p1=plt.plot(a[:,::2].T, a[:, 1::2].T, color='r')
plt.legend([p1[0]],['data_a'],loc='best')