我正在编写一个脚本来同时从许多计算机中检索WMI信息,然后将这些信息写入文本文件中:
f = open("results.txt", 'w+') ## to clean the results file before the start
def filesize(asset):
f = open("results.txt", 'a+')
c = wmi.WMI(asset)
wql = 'SELECT FileSize,Name FROM CIM_DataFile where (Drive="D:" OR Drive="E:") and Caption like "%file%"'
for item in c.query(wql):
print >> f, item.Name.split("\\")[2].strip().upper(), str(item.FileSize)
class myThread (threading.Thread):
def __init__(self,name):
threading.Thread.__init__(self)
self.name = name
def run(self):
pythoncom.CoInitialize ()
print "Starting " + self.name
filesize(self.name)
print "Exiting " + self.name
thread1 = myThread('10.24.2.31')
thread2 = myThread('10.24.2.32')
thread3 = myThread('10.24.2.33')
thread4 = myThread('10.24.2.34')
thread1.start()
thread2.start()
thread3.start()
thread4.start()
问题是所有线程同时写入。
答案 0 :(得分:23)
您可以简单地创建自己的锁定机制,以确保只有一个线程正在写入文件。
import threading
lock = threading.Lock()
def write_to_file(f, text, file_size):
lock.acquire() # thread blocks at this line until it can obtain lock
# in this section, only one thread can be present at a time.
print >> f, text, file_size
lock.release()
def filesize(asset):
f = open("results.txt", 'a+')
c = wmi.WMI(asset)
wql = 'SELECT FileSize,Name FROM CIM_DataFile where (Drive="D:" OR Drive="E:") and Caption like "%file%"'
for item in c.query(wql):
write_to_file(f, item.Name.split("\\")[2].strip().upper(), str(item.FileSize))
您可能需要考虑在整个for循环for item in c.query(wql):
周围放置锁,以允许每个线程在释放锁之前执行更大的工作。
答案 1 :(得分:5)
print
不是线程安全的。改为使用logging
模块(即):
import logging
import threading
import time
FORMAT = '[%(levelname)s] (%(threadName)-10s) %(message)s'
logging.basicConfig(level=logging.DEBUG,
format=FORMAT)
file_handler = logging.FileHandler('results.log')
file_handler.setFormatter(logging.Formatter(FORMAT))
logging.getLogger().addHandler(file_handler)
def worker():
logging.info('Starting')
time.sleep(2)
logging.info('Exiting')
t1 = threading.Thread(target=worker)
t2 = threading.Thread(target=worker)
t1.start()
t2.start()
输出(以及results.log
的内容):
[INFO] (Thread-1 ) Starting
[INFO] (Thread-2 ) Starting
[INFO] (Thread-1 ) Exiting
[INFO] (Thread-2 ) Exiting
您可以使用Thread-n
关键字参数设置自己的名称,而不是使用默认名称(name
),%(threadName)
格式化指令随后将使用该参数:
t = threading.Thread(name="My worker thread", target=worker)
(此示例改编自Doug Hellmann's excellent article about the threading
module)
答案 2 :(得分:3)
对于另一个解决方案,使用Pool
计算数据,将其返回到父进程。然后,此父级将所有数据写入文件。因为一次只有一个proc写入文件,所以不需要额外的锁定。
请注意,以下内容使用进程池,而不是线程。这使得代码比使用threading
模块放在一起更简单,更容易。 (有ThreadPool
个对象,但没有记录。)
import glob, os, time
from multiprocessing import Pool
def filesize(path):
time.sleep(0.1)
return (path, os.path.getsize(path))
paths = glob.glob('*.py')
pool = Pool() # default: proc per CPU
with open("results.txt", 'w+') as dataf:
for (apath, asize) in pool.imap_unordered(
filesize, paths,
):
print >>dataf, apath,asize
zwrap.py 122
usercustomize.py 38
tpending.py 2345
msimple4.py 385
parse2.py 499