我创建了一个tf-idf矩阵,但现在我想为每个文档检索前2个单词。我想传递文件ID,它应该给我前两个字。
现在,我有这个样本数据:
from sklearn.feature_extraction.text import TfidfVectorizer
d = {'doc1':"this is the first document",'doc2':"it is a sunny day"} ### corpus
test_v = TfidfVectorizer(min_df=1) ### applied the model
t = test_v.fit_transform(d.values())
feature_names = test_v.get_feature_names() ### list of words/terms
>>> feature_names
['day', 'document', 'first', 'is', 'it', 'sunny', 'the', 'this']
>>> t.toarray()
array([[ 0. , 0.47107781, 0.47107781, 0.33517574, 0. ,
0. , 0.47107781, 0.47107781],
[ 0.53404633, 0. , 0. , 0.37997836, 0.53404633,
0.53404633, 0. , 0. ]])
我可以通过给出行号来访问矩阵,例如。
>>> t[0,1]
0.47107781233161794
有没有办法可以通过文档ID访问此矩阵?在我的案例'doc1'和'doc2'。
由于
答案 0 :(得分:7)
通过
t = test_v.fit_transform(d.values())
您丢失了与文档ID的任何链接。没有订购字典,因此您不知道以哪种顺序给出了哪个值。这意味着在将值传递给fit_transform函数之前,您需要记录哪个值对应于哪个id。
例如,您可以做的是:
counter = 0
values = []
key = {}
for k,v in d.items():
values.append(v)
key[k] = counter
counter+=1
t = test_v.fit_transform(values)
从那里你可以构建一个函数来通过文档ID访问这个matix:
def get_doc_row(docid):
rowid = key[docid]
row = t[rowid,:]
return row