我在分割下面的车牌图像时遇到问题,而对下面的图像进行阈值处理时,字符被分成多于1个字符。所以我得到错误的OCR结果。我在对图像进行阈值处理后应用了形态学关闭操作,即使之后我也无法正确分割字符..
用于分割上述图像的代码如下所示
#include <iostream>
#include<cv.h>
#include<highgui.h>
using namespace std;
using namespace cv;
int main(int argc, char *argv[])
{
IplImage *img1 = cvLoadImage(argv[1] , 0);
IplImage *img2 = cvCloneImage(img1);
cvNamedWindow("Orig");
cvShowImage("Orig",img1);
cvWaitKey(0);
int wind = img1->height;
if (wind % 2 == 0) wind += 1;
cvAdaptiveThreshold(img1, img1, 255, CV_ADAPTIVE_THRESH_GAUSSIAN_C,
CV_THRESH_BINARY_INV, wind);
IplImage* temp = cvCloneImage(img1);
cvNamedWindow("Thre");
cvShowImage("Thre",img1);
cvWaitKey(0);
IplConvKernel* kernal = cvCreateStructuringElementEx(3, 3, 1, 1,
CV_SHAPE_RECT,NULL);
cvMorphologyEx(img1, img1, temp, kernal, CV_MOP_CLOSE, 1);
cvNamedWindow("close");
cvShowImage("close",img1);
cvWaitKey(0);
}
下面给出的输出图像..
任何人都可以提供一种很好的方法来分割这些图像中的字符...... ??
答案 0 :(得分:14)
我想展示快速&amp;由于字符的实际分割不是问题,因此在板中隔离字母/数字的脏方法。当这些是输入图像时:
这是我在算法结束时得到的结果:
因此,我在本回答中讨论的内容将为您提供一些想法,并帮助您摆脱当前细分过程结束时出现的工件。请记住,这种方法只适用于这些类型的图像,如果你需要更强大的东西,你需要调整一些东西,或者想出一些全新的方法来做这些东西。
findContours()
删除较小和较大段的方法:
std::vector<cv::Point>
来存储绘制所有这些段所需的所有像素坐标。这是创建cv::RotatedRect
所必需的,这使我们能够创建bounding box以及crop the image:
从现在开始,您可以使用裁剪后的图像执行自己的技术,并轻松分割印版的字符。
这是C ++代码:
#include <iostream>
#include <vector>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/imgproc/imgproc_c.h>
/* The code has an outter loop where every iteration processes one of the four input images */
std::string files[] = { "plate1.jpg", "plate2.jpg", "plate3.jpg", "plate4.jpg" };
cv::Mat imgs[4];
for (int a = 0; a < 4; a++)
{
/* Load input image */
imgs[a] = cv::imread(files[a]);
if (imgs[a].empty())
{
std::cout << "!!! Failed to open image: " << imgs[a] << std::endl;
return -1;
}
/* Convert to grayscale */
cv::Mat gray;
cv::cvtColor(imgs[a], gray, cv::COLOR_BGR2GRAY);
/* Histogram equalization improves the contrast between dark/bright areas */
cv::Mat equalized;
cv::equalizeHist(gray, equalized);
cv::imwrite(std::string("eq_" + std::to_string(a) + ".jpg"), equalized);
cv::imshow("Hist. Eq.", equalized);
/* Bilateral filter helps to improve the segmentation process */
cv::Mat blur;
cv::bilateralFilter(equalized, blur, 9, 75, 75);
cv::imwrite(std::string("filter_" + std::to_string(a) + ".jpg"), blur);
cv::imshow("Filter", blur);
/* Threshold to binarize the image */
cv::Mat thres;
cv::adaptiveThreshold(blur, thres, 255, cv::ADAPTIVE_THRESH_GAUSSIAN_C, cv::THRESH_BINARY, 15, 2); //15, 2
cv::imwrite(std::string("thres_" + std::to_string(a) + ".jpg"), thres);
cv::imshow("Threshold", thres);
/* Remove small segments and the extremelly large ones as well */
std::vector<std::vector<cv::Point> > contours;
cv::findContours(thres, contours, cv::RETR_LIST, cv::CHAIN_APPROX_SIMPLE);
double min_area = 50;
double max_area = 2000;
std::vector<std::vector<cv::Point> > good_contours;
for (size_t i = 0; i < contours.size(); i++)
{
double area = cv::contourArea(contours[i]);
if (area > min_area && area < max_area)
good_contours.push_back(contours[i]);
}
cv::Mat segments(gray.size(), CV_8U, cv::Scalar(255));
cv::drawContours(segments, good_contours, -1, cv::Scalar(0), cv::FILLED, 4);
cv::imwrite(std::string("segments_" + std::to_string(a) + ".jpg"), segments);
cv::imshow("Segments", segments);
/* Examine the segments that survived the previous lame filtering process
* to figure out the top and bottom heights of the largest segments.
* This info will be used to remove segments that are not aligned with
* the letters/numbers of the plate.
* This technique is super flawed for other types of input images.
*/
// Figure out the average of the top/bottom heights of the largest segments
int min_average_y = 0, max_average_y = 0, count = 0;
for (size_t i = 0; i < good_contours.size(); i++)
{
std::vector<cv::Point> c = good_contours[i];
double area = cv::contourArea(c);
if (area > 200)
{
int min_y = segments.rows, max_y = 0;
for (size_t j = 0; j < c.size(); j++)
{
if (c[j].y < min_y)
min_y = c[j].y;
if (c[j].y > max_y)
max_y = c[j].y;
}
min_average_y += min_y;
max_average_y += max_y;
count++;
}
}
min_average_y /= count;
max_average_y /= count;
//std::cout << "Average min: " << min_average_y << " max: " << max_average_y << std::endl;
// Create a new vector of contours with just the ones that fall within the min/max Y
std::vector<std::vector<cv::Point> > final_contours;
for (size_t i = 0; i < good_contours.size(); i++)
{
std::vector<cv::Point> c = good_contours[i];
int min_y = segments.rows, max_y = 0;
for (size_t j = 0; j < c.size(); j++)
{
if (c[j].y < min_y)
min_y = c[j].y;
if (c[j].y > max_y)
max_y = c[j].y;
}
// 5 is to add a little tolerance from the average Y coordinate
if (min_y >= (min_average_y-5) && (max_y <= max_average_y+5))
final_contours.push_back(c);
}
cv::Mat final(gray.size(), CV_8U, cv::Scalar(255));
cv::drawContours(final, final_contours, -1, cv::Scalar(0), cv::FILLED, 4);
cv::imwrite(std::string("final_" + std::to_string(a) + ".jpg"), final);
cv::imshow("Final", final);
// Create a single vector with all the points that make the segments
std::vector<cv::Point> points;
for (size_t x = 0; x < final_contours.size(); x++)
{
std::vector<cv::Point> c = final_contours[x];
for (size_t y = 0; y < c.size(); y++)
points.push_back(c[y]);
}
// Compute a single bounding box for the points
cv::RotatedRect box = cv::minAreaRect(cv::Mat(points));
cv::Rect roi;
roi.x = box.center.x - (box.size.width / 2);
roi.y = box.center.y - (box.size.height / 2);
roi.width = box.size.width;
roi.height = box.size.height;
// Draw the box at on equalized image
cv::Point2f vertices[4];
box.points(vertices);
for(int i = 0; i < 4; ++i)
cv::line(imgs[a], vertices[i], vertices[(i + 1) % 4], cv::Scalar(255, 0, 0), 1, CV_AA);
cv::imwrite(std::string("box_" + std::to_string(a) + ".jpg"), imgs[a]);
cv::imshow("Box", imgs[a]);
// Crop the equalized image with the area defined by the ROI
cv::Mat crop = equalized(roi);
cv::imwrite(std::string("crop_" + std::to_string(a) + ".jpg"), crop);
cv::imshow("crop", crop);
/* The cropped image should contain only the plate's letters and numbers.
* From here on you can use your own techniques to segment the characters properly.
*/
cv::waitKey(0);
}
有关使用OpenCV进行车牌识别的更完整和强大的方法,请查看Mastering OpenCV with Practical Computer Vision Projects,第5章。 Source code is available on Github!