Scikit-learn GridSearch给出“ValueError:不支持多类格式”错误

时间:2014-10-06 05:31:09

标签: python machine-learning scikit-learn

我尝试使用GridSearch进行LinearSVC()的参数估计,如下所示 -

clf_SVM = LinearSVC()
params = {
          'C': [0.5, 1.0, 1.5],
          'tol': [1e-3, 1e-4, 1e-5],
          'multi_class': ['ovr', 'crammer_singer'],
          }
gs = GridSearchCV(clf_SVM, params, cv=5, scoring='roc_auc')
gs.fit(corpus1, y)

corpus1具有形状(1726,7001),y具有形状(1726,)

这是一个多类分类,y的值从0到3,包括两个值,即有四个类。

但是这给了我以下错误 -

---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-220-0c627bda0543> in <module>()
      5           }
      6 gs = GridSearchCV(clf_SVM, params, cv=5, scoring='roc_auc')
----> 7 gs.fit(corpus1, y)

/usr/local/lib/python2.7/dist-packages/sklearn/grid_search.pyc in fit(self, X, y)
    594 
    595         """
--> 596         return self._fit(X, y, ParameterGrid(self.param_grid))
    597 
    598 

/usr/local/lib/python2.7/dist-packages/sklearn/grid_search.pyc in _fit(self, X, y, parameter_iterable)
    376                                     train, test, self.verbose, parameters,
    377                                     self.fit_params, return_parameters=True)
--> 378             for parameters in parameter_iterable
    379             for train, test in cv)
    380 

/usr/local/lib/python2.7/dist-packages/sklearn/externals/joblib/parallel.pyc in __call__(self, iterable)
    651             self._iterating = True
    652             for function, args, kwargs in iterable:
--> 653                 self.dispatch(function, args, kwargs)
    654 
    655             if pre_dispatch == "all" or n_jobs == 1:

/usr/local/lib/python2.7/dist-packages/sklearn/externals/joblib/parallel.pyc in dispatch(self, func, args, kwargs)
    398         """
    399         if self._pool is None:
--> 400             job = ImmediateApply(func, args, kwargs)
    401             index = len(self._jobs)
    402             if not _verbosity_filter(index, self.verbose):

/usr/local/lib/python2.7/dist-packages/sklearn/externals/joblib/parallel.pyc in __init__(self, func, args, kwargs)
    136         # Don't delay the application, to avoid keeping the input
    137         # arguments in memory
--> 138         self.results = func(*args, **kwargs)
    139 
    140     def get(self):

/usr/local/lib/python2.7/dist-packages/sklearn/cross_validation.pyc in _fit_and_score(estimator, X, y, scorer, train, test, verbose, parameters, fit_params, return_train_score, return_parameters)
   1238     else:
   1239         estimator.fit(X_train, y_train, **fit_params)
-> 1240     test_score = _score(estimator, X_test, y_test, scorer)
   1241     if return_train_score:
   1242         train_score = _score(estimator, X_train, y_train, scorer)

/usr/local/lib/python2.7/dist-packages/sklearn/cross_validation.pyc in _score(estimator, X_test, y_test, scorer)
   1294         score = scorer(estimator, X_test)
   1295     else:
-> 1296         score = scorer(estimator, X_test, y_test)
   1297     if not isinstance(score, numbers.Number):
   1298         raise ValueError("scoring must return a number, got %s (%s) instead."

/usr/local/lib/python2.7/dist-packages/sklearn/metrics/scorer.pyc in __call__(self, clf, X, y)
    136         y_type = type_of_target(y)
    137         if y_type not in ("binary", "multilabel-indicator"):
--> 138             raise ValueError("{0} format is not supported".format(y_type))
    139 
    140         try:

ValueError: multiclass format is not supported

3 个答案:

答案 0 :(得分:8)

从:

http://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html#sklearn.metrics.roc_auc_score

“注意:此实现仅限于标签指示符格式的二进制分类任务或多标签分类任务。”

尝试:

y = label_binarize(y, classes=[0, 1, 2, 3])
在你训练之前

这将对你的y进行“一热”编码。

答案 1 :(得分:3)

正如已经指出的那样,您必须首先对y

进行二值化
y = label_binarize(y, classes=[0, 1, 2, 3])

然后使用多类学习算法,例如OneVsRestClassifierOneVsOneClassifier。例如:

clf_SVM = OneVsRestClassifier(LinearSVC())
params = {
      'estimator__C': [0.5, 1.0, 1.5],
      'estimator__tol': [1e-3, 1e-4, 1e-5],
      }
gs = GridSearchCV(clf_SVM, params, cv=5, scoring='roc_auc')
gs.fit(corpus1, y)

答案 2 :(得分:0)

根据您的问题,您可以直接使用 to_categorical 而不是 preprocessing.label_binarize()。问题实际上来自使用 score=roc_auc。请注意,roc_auc 不支持分类数据。