Hadoop字数:接收以字母“c”开头的字总数

时间:2014-10-05 23:56:13

标签: hadoop mapreduce

继承Hadoop字数统计java地图并减少源代码:

在地图功能中,我已经到了可以输出以字母“c”开头的所有单词以及该单词出现的总次数的地方,但我想要做的只是输出以字母“c”开头的单词总数,但是我在获得总数方面略有不同。任何帮助将不胜感激,谢谢。

实施例

我得到的结果:

可以2

可以3

cat 5

我想要的是:

c-total 10

public static class MapClass extends MapReduceBase
   implements Mapper<LongWritable, Text, Text, IntWritable> {

private final static IntWritable one = new IntWritable(1);
private Text word = new Text();

public void map(LongWritable key, Text value,
                OutputCollector<Text, IntWritable> output,
                Reporter reporter) throws IOException {
  String line = value.toString();
  StringTokenizer itr = new StringTokenizer(line);
  while (itr.hasMoreTokens()) {
    word.set(itr.nextToken());
    if(word.toString().startsWith("c"){
    output.collect(word, one);
   }
  }
 } 
}


public static class Reduce extends MapReduceBase
implements Reducer<Text, IntWritable, Text, IntWritable> {

public void reduce(Text key, Iterator<IntWritable> values,
                   OutputCollector<Text, IntWritable> output,
                   Reporter reporter) throws IOException {
  int sum = 0;
  while (values.hasNext()) {
    sum += values.next().get(); //gets the sum of the words and add them together
  }
  output.collect(key, new IntWritable(sum)); //outputs the word and the number
  }
 }

3 个答案:

答案 0 :(得分:1)

而不是

output.collect(word, one);
在您的映射器中

,请尝试:

output.collect("c-total", one);

答案 1 :(得分:1)

Chris Gerken 的答案是对的。

如果您输出单词作为键,它只会帮助您计算以&#34; c&#34;

开头的唯一单词的数量

并非所有&#34; c&#34;。

的总数

因此,您需要从mapper输出唯一键。

 while (itr.hasMoreTokens()) {
            String token = itr.nextToken();
            if(token.startsWith("c")){
                word.set("C_Count");
                output.collect(word, one);
            }

        }

以下是使用New Api

的示例

驱动程序类

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

public class WordCount {

    public static void main(String[] args) throws Exception {
        Configuration conf = new Configuration();

        Job job = new Job(conf, "wordcount");
        FileSystem fs = FileSystem.get(conf);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        if (fs.exists(new Path(args[1])))
            fs.delete(new Path(args[1]), true);
        job.setMapperClass(Map.class);
        job.setReducerClass(Reduce.class);

        job.setInputFormatClass(TextInputFormat.class);
        job.setOutputFormatClass(TextOutputFormat.class);

        FileInputFormat.addInputPath(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
        job.setJarByClass(WordCount.class);     
        job.waitForCompletion(true);
    }

}

Mapper类

import java.io.IOException;
import java.util.StringTokenizer;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

public class Map extends Mapper<LongWritable, Text, Text, IntWritable> {
    private final static IntWritable one = new IntWritable(1);
    private Text word = new Text();

    public void map(LongWritable key, Text value, Context context)
            throws IOException, InterruptedException {
        String line = value.toString();
        StringTokenizer itr = new StringTokenizer(line);
        while (itr.hasMoreTokens()) {
            String token = itr.nextToken();
            if(token.startsWith("c")){
                word.set("C_Count");
                context.write(word, one);
            }

        }
    }
}

减速机等级

import java.io.IOException;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class Reduce extends Reducer<Text, IntWritable, Text, IntWritable> {

    public void reduce(Text key, Iterable<IntWritable> values, Context context)
            throws IOException, InterruptedException {
        int sum = 0;
        for (IntWritable val : values) {
            sum += val.get();
        }
        context.write(key, new IntWritable(sum));
    }
}

答案 2 :(得分:0)

mapper的简单代码:

public void map(LongWritable key, Text value,OutputCollector<Text,IntWritable> op, Reporter r)throws IOException
{
    String s = value.toString();
      for (String w : s.split("\\W+"))
       {
       if (w.length()>0)
        {
         if(w.startsWith("C")){
         op.collect(new Text("C-Count"), new IntWritable(1));        
         }
       }
  }
}