继承Hadoop字数统计java地图并减少源代码:
在地图功能中,我已经到了可以输出以字母“c”开头的所有单词以及该单词出现的总次数的地方,但我想要做的只是输出以字母“c”开头的单词总数,但是我在获得总数方面略有不同。任何帮助将不胜感激,谢谢。
实施例
我得到的结果:
可以2
可以3
cat 5
我想要的是:
c-total 10
public static class MapClass extends MapReduceBase
implements Mapper<LongWritable, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(LongWritable key, Text value,
OutputCollector<Text, IntWritable> output,
Reporter reporter) throws IOException {
String line = value.toString();
StringTokenizer itr = new StringTokenizer(line);
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
if(word.toString().startsWith("c"){
output.collect(word, one);
}
}
}
}
public static class Reduce extends MapReduceBase
implements Reducer<Text, IntWritable, Text, IntWritable> {
public void reduce(Text key, Iterator<IntWritable> values,
OutputCollector<Text, IntWritable> output,
Reporter reporter) throws IOException {
int sum = 0;
while (values.hasNext()) {
sum += values.next().get(); //gets the sum of the words and add them together
}
output.collect(key, new IntWritable(sum)); //outputs the word and the number
}
}
答案 0 :(得分:1)
而不是
output.collect(word, one);
在您的映射器中,请尝试:
output.collect("c-total", one);
答案 1 :(得分:1)
Chris Gerken 的答案是对的。
如果您输出单词作为键,它只会帮助您计算以&#34; c&#34;
开头的唯一单词的数量并非所有&#34; c&#34;。
的总数因此,您需要从mapper输出唯一键。
while (itr.hasMoreTokens()) {
String token = itr.nextToken();
if(token.startsWith("c")){
word.set("C_Count");
output.collect(word, one);
}
}
以下是使用New Api
的示例驱动程序类
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
public class WordCount {
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = new Job(conf, "wordcount");
FileSystem fs = FileSystem.get(conf);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
if (fs.exists(new Path(args[1])))
fs.delete(new Path(args[1]), true);
job.setMapperClass(Map.class);
job.setReducerClass(Reduce.class);
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.setJarByClass(WordCount.class);
job.waitForCompletion(true);
}
}
Mapper类
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
public class Map extends Mapper<LongWritable, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
String line = value.toString();
StringTokenizer itr = new StringTokenizer(line);
while (itr.hasMoreTokens()) {
String token = itr.nextToken();
if(token.startsWith("c")){
word.set("C_Count");
context.write(word, one);
}
}
}
}
减速机等级
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
public class Reduce extends Reducer<Text, IntWritable, Text, IntWritable> {
public void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
context.write(key, new IntWritable(sum));
}
}
答案 2 :(得分:0)
mapper的简单代码:
public void map(LongWritable key, Text value,OutputCollector<Text,IntWritable> op, Reporter r)throws IOException
{
String s = value.toString();
for (String w : s.split("\\W+"))
{
if (w.length()>0)
{
if(w.startsWith("C")){
op.collect(new Text("C-Count"), new IntWritable(1));
}
}
}
}