如何使用groupby将多个函数应用于Pandas中的多个列?

时间:2014-10-05 19:35:54

标签: python pandas dataframe group-by

我有正常的df

A = pd.DataFrame([[1, 5, 2], [2, 4, 4], [3, 3, 1], [4, 2, 2], [5, 1, 4]],
                 columns=['A', 'B', 'C'], index=[1, 2, 3, 4, 5])

关注this recipe,我得到了我想要的结果。

In [62]: A.groupby((A['A'] > 2)).apply(lambda x: pd.Series(dict(
                   up_B=(x.B >= 0).sum(), down_B=(x.B < 0).sum(), mean_B=(x.B).mean(), std_B=(x.B).std(),
                   up_C=(x.C >= 0).sum(), down_C=(x.C < 0).sum(), mean_C=(x.C).mean(), std_C=(x.C).std())))

Out[62]:
       down_B  down_C  mean_B    mean_C     std_B     std_C  up_B  up_C
A                                                                      
False       0       0     4.5  3.000000  0.707107  1.414214     2     2
True        0       0     2.0  2.333333  1.000000  1.527525     3     3

这种方法很好,但想象你必须为大量的列(15-100)做这个,然后你必须在公式中输入所有这些东西,这可能很麻烦。

鉴于相同的公式适用于所有列。有没有一种有效的方法来为大量的列做到这一点?

由于

1 个答案:

答案 0 :(得分:10)

由于您要将每个分组列聚合为一个值,因此您可以使用agg代替applyThe agg method可以将函数列表作为输入。这些函数将应用于每列

def up(x):
    return (x >= 0).sum()
def down(x):
    return (x < 0).sum()

result = A.loc[:, 'B':'C'].groupby((A['A'] > 2)).agg(
             [up, down, 'mean', 'std'])
print(result)

产量

       B                      C                         
      up down mean       std up down      mean       std
A                                                       
False  2    0  4.5  0.707107  2    0  3.000000  1.414214
True   3    0  2.0  1.000000  3    0  2.333333  1.527525

result具有分层(&#34; MultiIndexed&#34;)列。要选择某个列(或列),您可以使用:

In [39]: result['B','mean']
Out[39]: 
A
False    4.5
True     2.0
Name: (B, mean), dtype: float64

In [46]: result[[('B', 'mean'), ('C', 'mean')]]
Out[46]: 
         B         C
      mean      mean
A                   
False  4.5  3.000000
True   2.0  2.333333

或者您可以将MultiIndex的一个级别移动到索引:

In [40]: result.stack()
Out[40]: 
                   B         C
A                             
False up    2.000000  2.000000
      down  0.000000  0.000000
      mean  4.500000  3.000000
      std   0.707107  1.414214
True  up    3.000000  3.000000
      down  0.000000  0.000000
      mean  2.000000  2.333333
      std   1.000000  1.527525