R LDA主题建模:结果主题包含非常相似的单词

时间:2014-10-04 21:39:28

标签: r lda topic-modeling

所有

我是R主题建模的初学者,这一切都是在三周前开始的。所以我的问题是我可以成功地将我的数据处理成语料库,文档术语矩阵和LDA函数。我有推文作为我的输入和大约460,000条推文。但是我对结果不满意,所有话题都非常相似。

packages <- c('tm','topicmodels','SnowballC','RWeka','rJava')
if (length(setdiff(packages, rownames(installed.packages()))) > 0) {
install.packages(setdiff(packages, rownames(installed.packages())))  
}

options( java.parameters = "-Xmx4g" )
library(tm)
library(topicmodels)
library(SnowballC)
library(RWeka)

print("Please select the input file");
flush.console();
ifilename <- file.choose();
raw_data=scan(ifilename,'string',sep="\n",skip=1);

tweet_data=raw_data;
rm(raw_data);
tweet_data = gsub("(RT|via)((?:\\b\\W*@\\w+)+)","",tweet_data)
tweet_data = gsub("http[^[:blank:]]+", "", tweet_data)
tweet_data = gsub("@\\w+", "", tweet_data)
tweet_data = gsub("[ \t]{2,}", "", tweet_data)
tweet_data = gsub("^\\s+|\\s+$", "", tweet_data)
tweet_data = gsub('\\d+', '', tweet_data)
tweet_data = gsub("[[:punct:]]", " ", tweet_data)

max_size=5000;
data_size=length(tweet_data);
itinerary=ceiling(data_size[1]/max_size);
if (itinerary==1){pre_data=tweet_data}else {pre_data=tweet_data[1:max_size]}

corp <- Corpus(VectorSource(pre_data));
corp<-tm_map(corp,tolower);
corp<-tm_map(corp,removePunctuation);
extend_stop_word=c('description:','null','text:','description','url','text','aca',
                   'obama','romney','ryan','mitt','conservative','liberal');
corp<-tm_map(corp,removeNumbers);
gc();
IteratedLovinsStemmer(corp, control = NULL)
gc();
corp<-tm_map(corp,removeWords,c(stopwords('english'),extend_stop_word));
gc();
corp <- tm_map(corp, PlainTextDocument)
gc();
dtm.control = list(tolower= F,removePunctuation=F,removeNumbers= F,
                   stemming= F, minWordLength = 3,weighting= weightTf,stopwords=F)

dtm = DocumentTermMatrix(corp, control=dtm.control)
gc();
#dtm = removeSparseTerms(dtm,0.99)
dtm = dtm[rowSums(as.matrix(dtm))>0,]
gc();

best.model <- lapply(seq(2,50, by=2), function(k){LDA(dtm[1:10,], k)})
gc();
best.model.logLik <- as.data.frame(as.matrix(lapply(best.model, logLik)))
best.model.logLik.df <- data.frame(topics=c(seq(2,50, by=2)), LL=as.numeric(as.matrix(best.model.logLik)))
k=best.model.logLik.df[which.max(best.model.logLik.df$LL),1];
cat("Best topic number is k=",k);
flush.console();
gc();
lda.model = LDA(dtm, k,method='VEM')
gc();
write.csv(terms(lda.model,50), file = "terms.csv");
lda_topics=topics(lda.model,1);

以下是我得到的结果:

> terms(lda.model,10)
      Topic 1     Topic 2    Topic 3    Topic 4    Topic 5   
 [1,] "taxes"     "medicare" "tax"      "tax"      "jobs"    
 [2,] "pay"       "will"     "returns"  "returns"  "plan"    
 [3,] "welfare"   "tax"      "gop"      "taxes"    "gop"     
 [4,] "will"      "care"     "taxes"    "will"     "military"
 [5,] "returns"   "can"      "abortion" "paul"     "will"    
 [6,] "plan"      "laden"    "can"      "medicare" "tax"     
 [7,] "economy"   "vote"     "tcot"     "class"    "paul"    
 [8,] "budget"    "economy"  "muslim"   "budget"   "campaign"
 [9,] "president" "taxes"    "campaign" "says"     "says"    
[10,] "reid"      "just"     "economy"  "cuts"     "can"     
      Topic 6     Topic 7     Topic 8    Topic 9    
 [1,] "medicare"  "tax"       "medicare" "tax"      
 [2,] "taxes"     "medicare"  "tax"      "president"
 [3,] "plan"      "taxes"     "jobs"     "jobs"     
 [4,] "tcot"      "tcot"      "tcot"     "taxes"    
 [5,] "budget"    "president" "foreign"  "medicare" 
 [6,] "returns"   "jobs"      "plan"     "tcot"     
 [7,] "welfare"   "budget"    "will"     "paul"     
 [8,] "can"       "energy"    "economy"  "health"   
 [9,] "says"      "military"  "bush"     "people"   
[10,] "obamacare" "want"      "now"      "gop"      
      Topic 10    Topic 11   Topic 12  
 [1,] "tax"       "gop"      "gop"     
 [2,] "medicare"  "tcot"     "plan"    
 [3,] "tcot"      "military" "tax"     
 [4,] "president" "jobs"     "taxes"   
 [5,] "gop"       "energy"   "welfare" 
 [6,] "plan"      "will"     "tcot"    
 [7,] "jobs"      "ohio"     "military"
 [8,] "will"      "abortion" "campaign"
 [9,] "cuts"      "paul"     "class"   
[10,] "paul"      "budget"   "just" 

正如你可以看到&#34; tax&#34; &#34;医疗&#34;涵盖所有主题。我注意到,当我使用dtm = removeSparseTerms(dtm,0.99)时,结果可能会有所改变。以下是我的示例输入数据

> tweet_data[1:10]
 [1] " While  Romney friends get richer  MT  Romney Ryan Economic Plans Would Increase Unemployment Deepen Recession"                 
 [2] "Wayne Allyn Root claims proof of Obama s foreign citizenship  During a radio show interview Resist"                             
 [3] " President Obama  Chief Investor  Leave Energy Upgrades to the Businesses  Reading President Obama誷 latest Execu   "           
 [4] " Brotherhood  starts crucifixions Opponents of Egypt s Muslim president executed  naked on trees   Obama s    tcot"             
 [5] "  Say you stand with President Obama裻he candidate in this election who trusts women to make their own health decisions     "   
 [6] " Romney  Ryan Descend Into Medicare Gibberish "                                                                                 
 [7] "Maddow  Romney demanded opponents tax returns and lied about residency in    The Raw Story"                                     
 [8] "Is it not grand  How can Jews reconcile Obama   Carter s treatment of Jews Israel  How ca    "                                  
 [9] "   The Tax Returns are Hurting Romney  Badly  "                                                                                 
[10] "  Replacing Gen Dempsey is cruicial to US security  Dempsey  disappointed  by anti Obama campaign by ex military members  h    "

请帮助!!谢谢!

1 个答案:

答案 0 :(得分:1)

减少案例中的主题数量。这将增强主题模型的群集功能。现在,您将现有模型与另一个模型重叠。由于主题索引在迭代中有所不同,因此很难对结果进行比较/比较。