我有以下数据
['1', '4', '4', '244', '263', '704', '952']
['2', '4', '4', '215', '172', '305', '33']
['3', '4', '4', '344', '279', '377', '1945']
['4', '4', '4', '66', '79', '169', '150']
['5', '4', '3', '16', '22', '247']
['6', '4', '4', '17', '154', '93', '309']
['7', '3', '2', '233', '311']
['8', '3', '1', '15']
['9', '3', '2', '55', '102']
.....
总共200行,由50行数据块中的4个组成。类似的格式化数据块在文件内重复4次。我如何索引这些数据,并在每个块内以blcok-wise和列/行方式接近每个元素?我应该将这些数据正交化吗?
我从str到int步。我试图应用numpy.array或map,但它们没有用。
答案 0 :(得分:3)
获得列表清单后
l = [['1', '4', '4', '244', '263', '704', '952'],
['2', '4', '4', '215', '172', '305', '33'],
['3', '4', '4', '344', '279', '377', '1945'],
['4', '4', '4', '66', '79', '169', '150'],
['5', '4', '3', '16', '22', '247'],
['6', '4', '4', '17', '154', '93', '309'],
['7', '3', '2', '233', '311'],
['8', '3', '1', '15'],
['9', '3', '2', '55', '102']]
在列表理解中使用map
intList = [map(int, sublist) for sublist in l]
结果
>>> intList
[[1, 4, 4, 244, 263, 704, 952],
[2, 4, 4, 215, 172, 305, 33],
[3, 4, 4, 344, 279, 377, 1945],
[4, 4, 4, 66, 79, 169, 150],
[5, 4, 3, 16, 22, 247],
[6, 4, 4, 17, 154, 93, 309],
[7, 3, 2, 233, 311],
[8, 3, 1, 15],
[9, 3, 2, 55, 102]]
答案 1 :(得分:1)
关于“orthogonalize”,这可能是你要找的,
>>> li = [[1, 4, 4, 244, 263, 704, 952], [2, 4, 4, 215, 172, 305, 33], [3, 4, 4, 344, 279, 377, 1945], [4, 4, 4, 66, 79, 169, 150], [5, 4, 3, 16, 22, 247], [6, 4, 4, 17, 154, 93, 309], [7, 3, 2, 233, 311], [8, 3, 1, 15], [9, 3, 2, 55, 102]]
>>> def orthogonalize(li):
max_col = max(len(x) for x in li) + 1
for l in li:
for i in range(max_col-len(l)):
l.append(0)
>>> orthogonalize(li)
>>> li
[[1, 4, 4, 244, 263, 704, 952, 0], [2, 4, 4, 215, 172, 305, 33, 0], [3, 4, 4, 344, 279, 377, 1945, 0], [4, 4, 4, 66, 79, 169, 150, 0], [5, 4, 3, 16, 22, 247, 0, 0], [6, 4, 4, 17, 154, 93, 309, 0], [7, 3, 2, 233, 311, 0, 0, 0], [8, 3, 1, 15, 0, 0, 0, 0], [9, 3, 2, 55, 102, 0, 0, 0]]
>>> li[5]
[6, 4, 4, 17, 154, 93, 309, 0]
>>> li[6]
[7, 3, 2, 233, 311, 0, 0, 0]
>>>
根据您的额外要求进行修改:
由于我的理解有限,我必须做出假设, 你的数据是2d,但你想使用block#,line#和column#在3d中访问它,因为我在你的数据中找不到块标识符。并且您已经处理了数据
>>> def getData(data, block, line, column = None):
"""
Index start from 0 for block, line and column
getData(data, 0,1,1)
=> block# is 0 it will be processed as is
=> it will read value of line#1, column#1
getData(data, 1,1,1)
=> block# is 1 it will be convert to line number = 50*(block)+line
=> it will read value of line#51, column#1
"""
if column is None:
return data[50*(block)+line]
else:
return data[50*(block)+line][column]
>>> d = [[1, 4, 4, 244, 263, 704, 952, 0],
[2, 4, 4, 215, 172, 305, 33, 0],
[3, 4, 4, 344, 279, 377, 1945, 0],
............
[51, 4, 4, 244, 263, 704, 952, 0],
[52, 4, 4, 215, 172, 305, 33, 0],
[53, 4, 4, 344, 279, 377, 1945, 0],
[54, 4, 4, 66, 79, 169, 150, 0],
[55, 4, 3, 16, 22, 247, 0, 0],
[56, 4, 4, 17, 154, 93, 309, 0],
[57, 3, 2, 233, 311, 0, 0, 0],
[58, 3, 1, 15, 0, 0, 0, 0],
[59, 3, 2, 55, 102, 0, 0, 0],
[60, 4, 4, 304, 209, 307, 945, 0]]
>>> getData(d, 0, 0)
[1, 4, 4, 244, 263, 704, 952, 0]
>>> getData(d, 0, 0, 3)
244
>>> getData(d, 1, 0)
[51, 4, 4, 244, 263, 704, 952, 0]
>>> getData(d, 1, 0, 4)
263