我使用以下代码在3d中绘制通过原点的随机平面。
from __future__ import division
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
#Number of hyperplanes
n = 20
#Dimension of space
d = 3
plt3d = plt.figure().gca(projection='3d')
for i in xrange(n):
#Create random point on unit sphere
v = np.random.normal(size = d)
v = v/np.sqrt(np.sum(v**2))
# create x,y
xx, yy = np.meshgrid(range(-5,5), range(-5,5))
z = (-v[0] * xx - v[1] * yy)/v[2]
# plot the surface
plt3d.plot_surface(xx, yy, z, alpha = 0.5)
plt.show()
但是看看图片,我不相信他们是统一选择的。我做错了什么?
答案 0 :(得分:4)
我建议你检查你的轴。你的计算使得Z轴方式太大,这意味着你有一个荒谬的偏见观点。
首先检查您的法线是否均匀分布在圆圈上:
from __future__ import division
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
#Number of hyperplanes
n = 1000
#Dimension of space
d = 3
plt3d = plt.figure().gca(projection='3d')
for i in xrange(n):
#Create random point on unit sphere
v = np.random.normal(size = d)
v = v/np.sqrt(np.sum(v**2))
v *= 10
plt3d.scatter(v[0], v[1], v[2])
plt3d.set_aspect(1)
plt3d.set_xlim(-10, 10)
plt3d.set_ylim(-10, 10)
plt3d.set_zlim(-10, 10)
plt.show()
然后检查您的飞机是否正确创建:
from __future__ import division
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
#Number of hyperplanes
n = 1
#Dimension of space
d = 3
plt3d = plt.figure().gca(projection='3d')
for i in xrange(n):
#Create random point on unit sphere
v = np.random.normal(size = d)
v = v/np.sqrt(np.sum(v**2))
v *= 10
# create x,y
xx, yy = np.meshgrid(np.arange(-5,5,0.3), np.arange(-5,5,0.3))
xx = xx.flatten()
yy = yy.flatten()
z = (-v[0] * xx - v[1] * yy)/v[2]
# Hack to keep the plane small
filter = xx**2 + yy**2 + z**2 < 5**2
xx = xx[filter]
yy = yy[filter]
z = z[filter]
# plot the surface
plt3d.scatter(xx, yy, z, alpha = 0.5)
for i in np.arange(0.1, 1, 0.1):
plt3d.scatter(i*v[0], i*v[1], i*v[2])
plt3d.set_aspect(1)
plt3d.set_xlim(-10, 10)
plt3d.set_ylim(-10, 10)
plt3d.set_zlim(-10, 10)
plt.show()
然后你可以看到你实际上已经取得了不错的成绩!
from __future__ import division
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
#Number of hyperplanes
n = 100
#Dimension of space
d = 3
plt3d = plt.figure().gca(projection='3d')
for i in xrange(n):
#Create random point on unit sphere
v = np.random.normal(size = d)
v = v/np.sqrt(np.sum(v**2))
v *= 10
# create x,y
xx, yy = np.meshgrid(np.arange(-5,5,0.3), np.arange(-5,5,0.3))
xx = xx.flatten()
yy = yy.flatten()
z = (-v[0] * xx - v[1] * yy)/v[2]
# Hack to keep the plane small
filter = xx**2 + yy**2 + z**2 < 5**2
xx = xx[filter]
yy = yy[filter]
z = z[filter]
# plot the surface
plt3d.scatter(xx, yy, z, alpha = 0.5)
plt3d.set_aspect(1)
plt3d.set_xlim(-10, 10)
plt3d.set_ylim(-10, 10)
plt3d.set_zlim(-10, 10)
plt.show()
答案 1 :(得分:4)
您的代码正在生成具有随机分布法线的平面。他们看起来并不是那样,因为z尺度比x尺度和y尺度大得多。
您可以通过生成点来生成更好看的图像 均匀分布在飞机上。为此,请根据平面参数化平面 新坐标(u,v),然后在均匀间隔的网格上对平面进行采样 (你,v)点。然后将这些(u,v)点转换为(x,y,z) - 空间中的点。
from __future__ import division
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import math
import itertools as IT
def points_on_sphere(dim, N, norm=np.random.normal):
"""
http://en.wikipedia.org/wiki/N-sphere#Generating_random_points
"""
normal_deviates = norm(size=(N, dim))
radius = np.sqrt((normal_deviates ** 2).sum(axis=0))
points = normal_deviates / radius
return points
# Number of hyperplanes
n = 10
# Dimension of space
d = 3
fig, ax = plt.subplots(subplot_kw=dict(projection='3d'))
points = points_on_sphere(n, d).T
uu, vv = np.meshgrid([-5, 5], [-5, 5], sparse=True)
colors = np.linspace(0, 1, len(points))
cmap = plt.get_cmap('jet')
for nhat, c in IT.izip(points, colors):
u = (0, 1, 0) if np.allclose(nhat, (1, 0, 0)) else np.cross(nhat, (1, 0, 0))
u /= math.sqrt((u ** 2).sum())
v = np.cross(nhat, u)
u = u[:, np.newaxis, np.newaxis]
v = v[:, np.newaxis, np.newaxis]
xx, yy, zz = u * uu + v * vv
ax.plot_surface(xx, yy, zz, alpha=0.5, color=cmap(c))
ax.set_xlim3d([-5,5])
ax.set_ylim3d([-5,5])
ax.set_zlim3d([-5,5])
plt.show()
或者,您可以使用Till Hoffmann's pathpatch_2d_to_3d utility function:
来避免毛茸茸的数学运算for nhat, c in IT.izip(points, colors):
p = patches.Rectangle((-2.5, -2.5), 5, 5, color=cmap(c), alpha=0.5)
ax.add_patch(p)
pathpatch_2d_to_3d(p, z=0, normal=nhat)
ax.set_xlim3d([-5,5])
ax.set_ylim3d([-5,5])
ax.set_zlim3d([-5,5])
plt.show()
答案 2 :(得分:3)
看起来不是一切。你最好在下次测量: - ]。它似乎是非随机分布的,因为你没有固定轴。因此,你会看到一个主要的飞机,它上升到天空,其余部分因为比例,看起来非常相似而且没有随机分布。
这段代码怎么样:
from __future__ import division
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
#Number of hyperplanes
n = 20
#Dimension of space
d = 3
plt3d = plt.figure().gca(projection='3d')
for i in xrange(n):
#Create random point on unit sphere
v = np.random.normal(size = d)
v = v/np.sqrt(np.sum(v**2))
# create x,y
xx, yy = np.meshgrid(range(-1,1), range(-1,1))
z = (-v[0] * xx - v[1] * yy)/v[2]
# plot the surface
plt3d.plot_surface(xx, yy, z, alpha = 0.5)
plt3d.set_xlim3d([-1,1])
plt3d.set_ylim3d([-1,1])
plt3d.set_zlim3d([-1,1])
plt.show()
它并不完美,但现在似乎更随机......
答案 3 :(得分:1)
我试过这个,也许这是制作统一飞机的更好方法。我随机为球面坐标系取两个不同的角度,并将其转换为笛卡尔坐标,得到平面的法向量。同样在绘图时,你应该知道飞机的中点不在原点上。
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = Axes3D(fig)
for i in range(20):
theta = 2*np.pi*np.random.uniform(-1,1)
psi = 2*np.pi*np.random.uniform(-1,1)
normal = np.array([np.sin(theta)*np.cos(psi),np.sin(theta)*np.sin(psi),
np.cos(theta)])
xx, yy = np.meshgrid(np.arange(-1,1), np.arange(-1,1))
z = (-normal[0] * xx - normal[1] * yy)/normal[2]
ax.plot_surface(xx, yy, z, alpha=0.5)