运行此程序时,我在二叉搜索树中添加了大约3或4个值。在树中添加值后,我使用校验余额法查看不平衡是否为2或更大。一旦它达到2或更高,我使用balancebst方法来平衡它。在使用balance bst方法之后,我再次检查节点平衡级别以确保它已减少到至少1.由于某种原因,在添加几个值之后我的balancebst方法导致堆栈溢出。有谁知道为什么?这是一个非常长的类,但是balancebst方法和主要方法更接近底部。
import java.io.File;
import java.io.FileNotFoundException;
import java.util.ArrayList;
import java.util.Scanner;
import javax.swing.JOptionPane;
public class TestBST<E extends Comparable<E>> {
final double K = 1.3;
int height = 0;
protected TreeNode<E> root;
protected int size = 0;
/** Create a default binary tree */
public TestBST() {
}
/** Create a binary tree from an array of objects */
public TestBST(E[] objects) {
for (int i = 0; i < objects.length; i++)
insert(objects[i]);
}
/** Returns true if the element is in the tree */
public boolean search(E e) {
TreeNode<E> current = root; // Start from the root
while (current != null) {
if (e.compareTo(current.element) < 0) {
current = current.left;
}
else if (e.compareTo(current.element) > 0) {
current = current.right;
}
else // element matches current.element
return true; // Element is found
}
return false;
}
/** Insert element o into the binary tree
* Return true if the element is inserted successfully */
public boolean insert(E e) {
if (root == null)
root = createNewNode(e); // Create a new root
else {
// Locate the parent node
TreeNode<E> parent = null;
TreeNode<E> current = root;
while (current != null)
if (e.compareTo(current.element) < 0) {
parent = current;
current = current.left;
}
else if (e.compareTo(current.element) > 0) {
parent = current;
current = current.right;
}
else
return false; // Duplicate node not inserted
// Create the new node and attach it to the parent node
if (e.compareTo(parent.element) < 0)
parent.left = createNewNode(e);
else
parent.right = createNewNode(e);
}
size++;
return true; // Element inserted
}
protected TreeNode<E> createNewNode(E e) {
return new TreeNode<E>(e);
}
/** Inorder traversal from the root*/
public void inorder() {
inorder(root);
}
/** Inorder traversal from a subtree */
protected void inorder(TreeNode<E> root) {
if (root == null) return;
inorder(root.left);
System.out.print(root.element + " ");
inorder(root.right);
}
/** Postorder traversal from the root */
public void postorder() {
postorder(root);
}
/** Postorder traversal from a subtree */
protected void postorder(TreeNode<E> root) {
if (root == null) return;
postorder(root.left);
postorder(root.right);
System.out.print(root.element + " ");
}
/** Preorder traversal from the root */
public void preorder() {
preorder(root);
}
/** Preorder traversal from a subtree */
protected void preorder(TreeNode<E> root) {
if (root == null) return;
System.out.print(root.element + " ");
preorder(root.left);
preorder(root.right);
}
/** This inner class is static, because it does not access
any instance members defined in its outer class */
public static class TreeNode<E extends Comparable<E>> {
protected E element;
protected TreeNode<E> left;
protected TreeNode<E> right;
public TreeNode(E e) {
element = e;
}
}
/** Get the number of nodes in the tree */
public int getSize() {
return size;
}
/** Returns the root of the tree */
public TreeNode<E> getRoot() {
return root;
}
/** Returns a path from the root leading to the specified element */
public java.util.ArrayList<TreeNode<E>> path(E e) {
java.util.ArrayList<TreeNode<E>> list =
new java.util.ArrayList<TreeNode<E>>();
TreeNode<E> current = root; // Start from the root
while (current != null) {
list.add(current); // Add the node to the list
if (e.compareTo(current.element) < 0) {
current = current.left;
}
else if (e.compareTo(current.element) > 0) {
current = current.right;
}
else
break;
}
return list; // Return an array of nodes
}
/** Delete an element from the binary tree.
* Return true if the element is deleted successfully
* Return false if the element is not in the tree */
public boolean delete(E e) {
// Locate the node to be deleted and also locate its parent node
TreeNode<E> parent = null;
TreeNode<E> current = root;
while (current != null) {
if (e.compareTo(current.element) < 0) {
parent = current;
current = current.left;
}
else if (e.compareTo(current.element) > 0) {
parent = current;
current = current.right;
}
else
break; // Element is in the tree pointed at by current
}
if (current == null)
return false; // Element is not in the tree
// Case 1: current has no left children
if (current.left == null) {
// Connect the parent with the right child of the current node
if (parent == null) {
root = current.right;
}
else {
if (e.compareTo(parent.element) < 0)
parent.left = current.right;
else
parent.right = current.right;
}
}
else {
// Case 2: The current node has a left child
// Locate the rightmost node in the left subtree of
// the current node and also its parent
TreeNode<E> parentOfRightMost = current;
TreeNode<E> rightMost = current.left;
while (rightMost.right != null) {
parentOfRightMost = rightMost;
rightMost = rightMost.right; // Keep going to the right
}
// Replace the element in current by the element in rightMost
current.element = rightMost.element;
// Eliminate rightmost node
if (parentOfRightMost.right == rightMost)
parentOfRightMost.right = rightMost.left;
else
// Special case: parentOfRightMost == current
parentOfRightMost.left = rightMost.left;
}
size--;
return true; // Element inserted
}
/** Obtain an iterator. Use inorder. */
public java.util.Iterator<E> iterator() {
return new InorderIterator();
}
// Inner class InorderIterator
private class InorderIterator implements java.util.Iterator<E> {
// Store the elements in a list
private java.util.ArrayList<E> list =
new java.util.ArrayList<E>();
private int current = 0; // Point to the current element in list
public InorderIterator() {
inorder(); // Traverse binary tree and store elements in list
}
/** Inorder traversal from the root*/
private void inorder() {
inorder(root);
}
/** Inorder traversal from a subtree */
private void inorder(TreeNode<E> root) {
if (root == null)return;
inorder(root.left);
list.add(root.element);
inorder(root.right);
}
/** More elements for traversing? */
public boolean hasNext() {
if (current < list.size())
return true;
return false;
}
/** Get the current element and move to the next */
public E next() {
return list.get(current++);
}
/** Remove the current element */
public void remove() {
delete(list.get(current)); // Delete the current element
list.clear(); // Clear the list
inorder(); // Rebuild the list
}
}
/** Remove all elements from the tree */
public void clear() {
root = null;
size = 0;
}
public int treeHeight(){
return treeHeight(root);
}
private int treeHeight(TreeNode root){
return treeHeight(root, 0);
}
private int treeHeight(TreeNode root, int length){
if (root == null)
return length;
return Math.max( treeHeight(root.left, length + 1),
treeHeight(root.right, length + 1));
}
public int numberOfNodesAtLevel(int level){
return numberOfNodesAtLevel(root, level);
}
private int numberOfNodesAtLevel(TreeNode root, int level){
if (root == null){
return 0;
}
if (level == 0){
return 1;
}
return numberOfNodesAtLevel(root.left, level - 1) +
numberOfNodesAtLevel(root.right, level - 1);
}
public int nodeBalanceLevel(){
return nodeBalanceLevel(root);
}
private int nodeBalanceLevel(TreeNode root){
if (root == null)
return 0;
return Math.abs( treeHeight(root.left)
- treeHeight(root.right));
}
private double minAceLevelNodes(int power, double totalLevels){
double sum = 0;
if (power < totalLevels){
sum = Math.pow(2, power) - 1;
return sum;}
sum = getSize() - (Math.pow(2, (Math.floor( totalLevels) - 1 ))) -1 ;
return sum;
}
public double calculateAce(){
double sum = 0;
int level;
for ( level = 0; level < (int) treeHeight() ; level++){
sum += numberOfNodesAtLevel(level) * (level + 1);
}
double ace = sum/ this.size;
return ace;
}
public double calculateMinAce(){
double sum = 0;
double totalLevels = Math.floor( Math.log(getSize()+1)/Math.log(2));
int level;
for ( level = 0; level < totalLevels ; level++){
sum += minAceLevelNodes(level, totalLevels) * (level + 1);
}
double ace = sum/ this.size;
return ace;
}
public double calculateMaxAce(){
double sum = 0;
int level;
for ( level = 0; level < (int) getSize() ; level++){
sum += (level + 1);
}
double ace = sum/ this.size;
return ace;
}
public boolean needsBalancing(){
if ( calculateAce() > calculateMinAce() * K ){
return true;}
return false;
}
public boolean balanceBST(){
if (root == null){
return false;
}
int right = treeHeight(root.right);
int left = treeHeight(root.left);
if (nodeBalanceLevel(root) > 1){
if (right - left > 1){
this.balanceRight();
}
if ( left - right > 1){
this.balanceLeft();
}
return balanceBST();
}
return true;
}
private void balanceRight() {
TreeNode oldRoot = root; // Save the current root (1)
if (root.right != null) { // Can this ever happen? (*)
root = root.right; // Setting the new root (2)
}
if (oldRoot.left != null) { // Adjust the left sub tree
oldRoot.right = root.left; // Assign the left sub tree to the previous root right tree (3)
root.left = oldRoot; // Assign to the new left tree the prevouis left tree (4)
}
}
private void balanceLeft() {
TreeNode oldRoot = root; // Save the current root (1)
if (root.left != null) { // Can this ever happen? (*)
root = root.left; // Setting the new root (2)
}
if (oldRoot.right != null) { // Adjust the left sub tree
oldRoot.left = root.right; // Assign the left sub tree to the previous root right tree (3)
root.right = oldRoot; // Assign to the new left tree the prevouis left tree (4)
}
}
public static void main(String[] args){
File input = new File("BSTINPUT.txt");
try {
Scanner reader = new Scanner(input);
ArrayList <String> valuePasser = new ArrayList <String>();
String [] tempStorage;
while (reader.hasNext()){
String line = reader.nextLine();
tempStorage =(line.split(";"));
for (int i = 0; i< tempStorage.length; i++){
valuePasser.add( tempStorage[i]);
}
}
String[] tempHold = new String[valuePasser.size()];
for (int i = 0; i< valuePasser.size(); i++){
tempHold[i] = valuePasser.get(i);
}
TestBST <String> bst = new TestBST<String> (tempHold);
int actionChoice = 12;
do{
try{
actionChoice = Integer.parseInt( JOptionPane.showInputDialog("Please choose action: \n "
+ "(0) Exit program\n (1) In-order tree traversal\n (2) Pre-order tree traversal\n (3) CalculateACE\n"
+ "(4) CalculateMinAce\n (5) CalculateMaxACE\n (6) NumberOfNodesAllLevels\n (7) TreeHeight\n (8) NodeBalanceLevel\n "
+ "(9) NeedsBalancing\n (10) BalanceBST\n (11) insert value\n" ));}
catch (NumberFormatException e){
JOptionPane.showMessageDialog(null, "Sorry, program only takes integer values between 0 and 10. Please restart program");
System.exit(1);
}
if (actionChoice < 0 || actionChoice > 11){
JOptionPane.showMessageDialog(null, "Sorry, program only takes integer values between 0 and 10. please restart program");
System.exit(1);
}
if (actionChoice ==1){
System.out.println(" In-order tree values: ");
bst.inorder();
System.out.println(" ");
}
if (actionChoice ==2){
System.out.println("pre-order tree values: ");
bst.preorder();
System.out.println(" ");
}
if (actionChoice ==3){
System.out.println( "Tree ACE value : " + bst.calculateAce());
System.out.println(" ");
}
if (actionChoice ==4){
System.out.println( "Tree minACE value : " + bst.calculateMinAce());
System.out.println(" ");
}
if (actionChoice ==5){
System.out.println( "Tree maxACE value : " + bst.calculateMaxAce());
System.out.println(" ");
}
if (actionChoice ==6){
System.out.println(" The number of nodes at all levels of the tree are:");
for (int i = 0; i< bst.treeHeight(); i++){
System.out.println("Number of nodes at level: " + i);
System.out.println(bst.numberOfNodesAtLevel(i));
}
System.out.println(" ");
}
if (actionChoice ==7){
System.out.println(" Current tree height: "+ bst.treeHeight());
System.out.println(" ");
}
if (actionChoice ==8){
System.out.println(" Node Balance Level: "+ bst.nodeBalanceLevel());
System.out.println(" ");
}
if (actionChoice ==9){
System.out.println(" Tree needs balancing?: "+ bst.needsBalancing());
System.out.println(" ");
}
if (actionChoice ==10){
System.out.println(" Balancing BST: "+ bst.balanceBST());
System.out.println(" ");
}
if (actionChoice ==11){
bst.insert( JOptionPane.showInputDialog("Input integer to be added to tree: "));
System.out.println(" ");
}
}while (actionChoice != 0);
} catch (FileNotFoundException e) {
System.out.println("File not found. Please connect BSTINPUT.txt file and restart program.");
}
}
}