注意:此问题的标题已经过编辑,使其成为plyr
函数屏蔽其dplyr
对应项时问题的规范问题。问题的其余部分保持不变。
假设我有以下数据:
dfx <- data.frame(
group = c(rep('A', 8), rep('B', 15), rep('C', 6)),
sex = sample(c("M", "F"), size = 29, replace = TRUE),
age = runif(n = 29, min = 18, max = 54)
)
使用旧的plyr
我可以使用以下代码创建一个汇总我的数据的小表:
require(plyr)
ddply(dfx, .(group, sex), summarize,
mean = round(mean(age), 2),
sd = round(sd(age), 2))
输出如下:
group sex mean sd
1 A F 49.68 5.68
2 A M 32.21 6.27
3 B F 31.87 9.80
4 B M 37.54 9.73
5 C F 40.61 15.21
6 C M 36.33 11.33
我正在尝试将代码移至dplyr
和%>%
运算符。我的代码采用DF然后按组和性别对其进行分组,然后对其进行汇总。那就是:
dfx %>% group_by(group, sex) %>%
summarise(mean = round(mean(age), 2), sd = round(sd(age), 2))
但我的输出是:
mean sd
1 35.56 9.92
我做错了什么?
答案 0 :(得分:23)
这里的问题是你首先加载dplyr然后plyr,所以plyr的函数summarise
掩盖了dplyr的函数summarise
。当发生这种情况时,您会收到此警告:
require(plyr)
Loading required package: plyr
------------------------------------------------------------------------------------------
You have loaded plyr after dplyr - this is likely to cause problems.
If you need functions from both plyr and dplyr, please load plyr first, then dplyr:
library(plyr); library(dplyr)
------------------------------------------------------------------------------------------
Attaching package: ‘plyr’
The following objects are masked from ‘package:dplyr’:
arrange, desc, failwith, id, mutate, summarise, summarize
因此,为了使您的代码正常工作,请分离plyr detach(package:plyr)
或重新启动R并先加载plyr然后再加载dplyr(或仅加载dplyr):
library(dplyr)
dfx %>% group_by(group, sex) %>%
summarise(mean = round(mean(age), 2), sd = round(sd(age), 2))
Source: local data frame [6 x 4]
Groups: group
group sex mean sd
1 A F 41.51 8.24
2 A M 32.23 11.85
3 B F 38.79 11.93
4 B M 31.00 7.92
5 C F 24.97 7.46
6 C M 36.17 9.11
或者您可以在代码中明确调用dplyr的汇总,因此无论您如何加载包,都会调用正确的函数:
dfx %>% group_by(group, sex) %>%
dplyr::summarise(mean = round(mean(age), 2), sd = round(sd(age), 2))
答案 1 :(得分:4)
您的代码正在调用plyr::summarise
而不是dplyr::summarise
,因为您已加载的顺序&#34; plyr&#34;和&#34; dplyr&#34;。
演示:
library(dplyr) ## I'm guessing this is the order you loaded
library(plyr)
dfx %>% group_by(group, sex) %>%
summarise(mean = round(mean(age), 2), sd = round(sd(age), 2))
# mean sd
# 1 36.88 9.76
dfx %>% group_by(group, sex) %>%
dplyr::summarise(mean = round(mean(age), 2), sd = round(sd(age), 2))
# Source: local data frame [6 x 4]
# Groups: group
#
# group sex mean sd
# 1 A F 32.17 6.30
# 2 A M 30.98 7.37
# 3 B F 38.20 7.67
# 4 B M 33.12 12.24
# 5 C F 43.91 10.31
# 6 C M 47.53 8.25