我正在进行蒙特卡罗模拟,目前正在使用System.Random
。
import System.Random
main = do
g <- newStdGen
let xs = randoms g :: [Double]
-- normally, I'd do other magic here
putStrLn $ show $ length $ take 10^9 xs
不幸的是,这需要很长时间,比Python random.random()
慢至少5倍,更不用说C rand()
调用了。
ghc -O2 -optc-ffast-math -optc-O3
import System.Random
main = do
g <- newStdGen
let xs = randoms h :: [Double]
putStrLn $ show $ length $ take (10^7) xs
需要〜8s vs.(在iPython中)
import random
%timeit len([random.random() for _ in range(10 ** 7)])
需要约1.3秒。我的目标是10亿,但Haskell无法在合理的时间内生成它们。
我还有一个用rand()
生成浮点数的C ++程序。它在0.2秒内进行10^7
个样本。
如何在Haskell中快速生成[0-1)
范围内的随机双打?
理想情况下,GHC生成的程序只会激活rand()
POSIX调用并收集到列表中。最干净,最简单的答案最快的代码获胜。 (不,10%的代码加速1%是不值得的。)
答案 0 :(得分:2)
这里的Mersenne虽然我们在不同的计算机上,但出乎意料地看起来比MWC更快并击败C ++ ;-)。很难看出它会买多少并行,但我最好还是回去工作。
{-# LANGUAGE BangPatterns #-}
{-# OPTIONS_GHC -Wall #-}
{-# OPTIONS_GHC -fno-warn-name-shadowing #-}
{-# OPTIONS_GHC -fno-warn-type-defaults #-}
import System.Random.Mersenne.Pure64
testUniform :: Int -> Double -> PureMT -> Double
testUniform 0 !x _ = x
testUniform n !x gen =
testUniform (n - 1) (x + y) gen'
where
(y, gen') = randomDouble gen
n :: Int
n = 10^7
total :: Double
total = testUniform n 0 (pureMT $ fromIntegral arbSeed)
arbSeed :: Int
arbSeed = 8
mean :: Double
mean = total / fromIntegral n
main :: IO ()
main = print mean
~/Dropbox/Private/Stochastic $ ./MersennePure +RTS -s
0.4999607889729769
802,924,992 bytes allocated in the heap
164,240 bytes copied during GC
44,312 bytes maximum residency (2 sample(s))
21,224 bytes maximum slop
1 MB total memory in use (0 MB lost due to fragmentation)
Tot time (elapsed) Avg pause Max pause
Gen 0 1634 colls, 0 par 0.00s 0.01s 0.0000s 0.0000s
Gen 1 2 colls, 0 par 0.00s 0.00s 0.0001s 0.0002s
INIT time 0.00s ( 0.00s elapsed)
MUT time 0.11s ( 0.11s elapsed)
GC time 0.00s ( 0.01s elapsed)
EXIT time 0.00s ( 0.00s elapsed)
Total time 0.12s ( 0.12s elapsed)
%GC time 4.2% (5.4% elapsed)
Alloc rate 7,336,065,126 bytes per MUT second
Productivity 95.7% of total user, 93.5% of total elapsed