什么是Pythonic方法来制作一个非阻塞版本的对象?

时间:2014-09-24 15:04:48

标签: python multithreading multiprocessing subprocess nonblocking

我经常使用python对象的方法阻塞直到完成,并希望将这些方法转换为非阻塞版本。我发现自己经常执行以下模式:

  1. 定义对象
  2. 定义一个创建对象实例的函数,并解析命令以调用对象的方法
  3. 定义"父母"创建运行第2步中定义的函数的子进程的对象,该对象复制原始对象的方法。
  4. 这可以完成工作,但涉及大量繁琐的代码重复,并且对我来说似乎不是Pythonic。 是否有标准的,更好的方法来执行此操作?

    一个高度简化的例子来说明我一直在使用的模式:

    import ctypes
    import Queue
    import multiprocessing as mp
    
    class Hardware:
        def __init__(
            self,
            other_init_args):
            self.dll = ctypes.cll.LoadLibrary('hardware.dll')
            self.dll.Initialize(other_init_args)
    
        def blocking_command(self, arg_1, arg_2, arg_3):
            """
            This command takes a long time to execute, and blocks while it
            executes. However, while it's executing, we have to coordinate
            other pieces of hardware too, so blocking is bad.
            """
            self.dll.Takes_A_Long_Time(arg_1, arg_2, arg_3)
    
        def change_settings(self, arg_1, arg_2):
            """
            Realistically, there's tons of other functions in the DLL we
            want to expose as methods. For this example, just one.
            """
            self.dll.Change_Settings(arg_1, arg_2)
    
        def close(self):
            self.dll.Quit()
    
    def hardware_child_process(
        commands,
        other_init_args):
        hw = Hardware(other_init_args)
        while True:
            cmd, args = commands.recv()
            if cmd == 'start':
                hw.blocking_command(**args)
            elif cmd == 'change_settings':
                hw.change_settings(**args)
            elif cmd == 'quit':
                break
        hw.close()
    
    class Nonblocking_Hardware:
        """
        This class (hopefully) duplicates the functionality of the
        Hardware class, except now Hardware.blocking_command() doesn't
        block other execution.
        """
        def __init__(
            self,
            other_init_args):
            self.commands, self.child_commands = mp.Pipe()
            self.child = mp.Process(
                target=hardware_child_process,
                args=(self.child_commands,
                      other_init_args))
            self.child.start()
    
        def blocking_command(self, arg_1, arg_2, arg_3):
            """
            Doesn't block any more!
            """
            self.commands.send(
                ('start',
                 {'arg_1': arg_1,
                  'arg_2': arg_2,
                  'arg_3': arg_3}))
    
        def change_settings(self, arg_1, arg_2):
            self.commands.send(
                ('change_settings',
                 {'arg_1': arg_1,
                  'arg_2': arg_2}))
    
        def close(self):
            self.commands.send(('quit', {}))
            self.child.join()
            return None
    

    背景故事:

    我使用Python来控制硬件,通常是通过我使用ctypes调用的闭源DLL。通常,我最终想要调用DLL中的函数,这些函数会阻塞直到执行完成,但我不希望我的控制代码被阻塞。例如,我可能正在使用模拟输出卡同步照相机和照明。相机DLL" snap"在模拟输出卡可以向相机发送触发脉冲之前必须调用该功能,但是" snap"命令块,阻止我激活模拟输出卡。

2 个答案:

答案 0 :(得分:2)

我通过使用元类在对象上创建阻塞函数的非阻塞版本来完成类似的操作。它允许您通过执行以下操作来创建类的非阻塞版本:

class NB_Hardware(object):
    __metaclass__ = NonBlockBuilder
    delegate = Hardware
    nb_funcs = ['blocking_command']

我已经采用了我的原始实现,它针对Python 3并使用了concurrent.futures.ThreadPoolExecutor(我正在包装阻塞I / O调用以使它们在asyncio上下文中无阻塞*) ,并使它们适应使用Python 2和concurrent.futures.ProcessPoolExecutor。这里是元类的实现及其辅助类:

from multiprocessing import cpu_count
from concurrent.futures import ProcessPoolExecutor

def runner(self, cb, *args, **kwargs):
    return getattr(self, cb)(*args, **kwargs)

class _ExecutorMixin():
    """ A Mixin that provides asynchronous functionality.

    This mixin provides methods that allow a class to run
    blocking methods in a ProcessPoolExecutor.
    It also provides methods that attempt to keep the object
    picklable despite having a non-picklable ProcessPoolExecutor
    as part of its state.

    """
    pool_workers = cpu_count()

    def run_in_executor(self, callback, *args, **kwargs):
        """  Runs a function in an Executor.

        Returns a concurrent.Futures.Future

        """
        if not hasattr(self, '_executor'):
            self._executor = self._get_executor()

        return self._executor.submit(runner, self, callback, *args, **kwargs)

    def _get_executor(self):
        return ProcessPoolExecutor(max_workers=self.pool_workers)

    def __getattr__(self, attr):
        if (self._obj and hasattr(self._obj, attr) and
            not attr.startswith("__")):
            return getattr(self._obj, attr)
        raise AttributeError(attr)

    def __getstate__(self):
        self_dict = self.__dict__
        self_dict['_executor'] = None
        return self_dict

    def __setstate__(self, state):
        self.__dict__.update(state)
        self._executor = self._get_executor()

class NonBlockBuilder(type):
    """ Metaclass for adding non-blocking versions of methods to a class.  

    Expects to find the following class attributes:
    nb_funcs - A list containing methods that need non-blocking wrappers
    delegate - The class to wrap (add non-blocking methods to)
    pool_workers - (optional) how many workers to put in the internal pool.

    The metaclass inserts a mixin (_ExecutorMixin) into the inheritence
    hierarchy of cls. This mixin provides methods that allow
    the non-blocking wrappers to do their work.

    """
    def __new__(cls, clsname, bases, dct, **kwargs):
        nbfunc_list = dct.get('nb_funcs', [])
        existing_nbfuncs = set()

        def find_existing_nbfuncs(d):
            for attr in d:
                if attr.startswith("nb_"):
                    existing_nbfuncs.add(attr)

        # Determine if any bases include the nb_funcs attribute, or
        # if either this class or a base class provides an actual
        # implementation for a non-blocking method.
        find_existing_nbfuncs(dct)
        for b in bases:
            b_dct = b.__dict__
            nbfunc_list.extend(b_dct.get('nb_funcs', []))
            find_existing_nbfuncs(b_dct)

        # Add _ExecutorMixin to bases.
        if _ExecutorMixin not in bases:
            bases += (_ExecutorMixin,)

        # Add non-blocking funcs to dct, but only if a definition
        # is not already provided by dct or one of our bases.
        for func in nbfunc_list:
            nb_name = 'nb_{}'.format(func)
            if nb_name not in existing_nbfuncs:
                dct[nb_name] = cls.nbfunc_maker(func)

        return super(NonBlockBuilder, cls).__new__(cls, clsname, bases, dct)

    def __init__(cls, name, bases, dct):
        """ Properly initialize a non-blocking wrapper.

        Sets pool_workers and delegate on the class, and also
        adds an __init__ method to it that instantiates the
        delegate with the proper context.

        """
        super(NonBlockBuilder, cls).__init__(name, bases, dct)
        pool_workers = dct.get('pool_workers')
        delegate = dct.get('delegate')
        old_init = dct.get('__init__')
        # Search bases for values we care about, if we didn't
        # find them on the child class.
        for b in bases:
            if b is object:  # Skip object
                continue
            b_dct = b.__dict__
            if not pool_workers:
                pool_workers = b_dct.get('pool_workers')
            if not delegate:
                delegate = b_dct.get('delegate')
            if not old_init:
                old_init = b_dct.get('__init__')

        cls.delegate = delegate

        # If we found a value for pool_workers, set it. If not,
        # ExecutorMixin sets a default that will be used.
        if pool_workers:
            cls.pool_workers = pool_workers

        # Here's the __init__ we want every wrapper class to use.
        # It just instantiates the delegate object.
        def init_func(self, *args, **kwargs):
            # Be sure to call the original __init__, if there
            # was one.
            if old_init:
                old_init(self, *args, **kwargs)

            if self.delegate:
                self._obj = self.delegate(*args, **kwargs)
        cls.__init__ = init_func

    @staticmethod
    def nbfunc_maker(func):
        def nb_func(self, *args, **kwargs):
            return self.run_in_executor(func, *args, **kwargs)
        return nb_func

用法:

from nb_helper import NonBlockBuilder
import time


class Hardware:
    def __init__(self, other_init_args):
        self.other = other_init_args

    def blocking_command(self, arg_1, arg_2, arg_3):
        print("start blocking")
        time.sleep(5)
        return "blocking"

    def normal_command(self):
        return "normal"


class NBHardware(object):
    __metaclass__ = NonBlockBuilder
    delegate = Hardware
    nb_funcs = ['blocking_command']


if __name__ == "__main__":
    h = NBHardware("abc")
    print "doing blocking call"
    print h.blocking_command(1,2,3)
    print "done"
    print "doing non-block call"
    x = h.nb_blocking_command(1,2,3)  # This is non-blocking and returns concurrent.future.Future
    print h.normal_command()  # You can still use the normal functions, too.
    print x.result()  # Waits for the result from the Future

输出:

doing blocking call
start blocking
< 5 second delay >
blocking
done
doing non-block call
start blocking
normal
< 5 second delay >
blocking

对您而言,一个棘手的问题是确保Hardware可以选择。您可以通过__getstate__删除dll对象,然后在__setstate__中重新创建它,与_ExecutorMixin类似的内容来完成此操作。

您还需要Python 2.x backport of concurrent.futures

请注意,元类中存在大量复杂性,因此它们可以正常继承,并支持提供__init__nb_*方法的自定义实现。例如,支持这样的事情:

class AioBaseLock(object):
    __metaclass__ = NonBlockBuilder
    pool_workers = 1
    coroutines = ['acquire', 'release']

def __init__(self, *args, **kwargs):
    self._threaded_acquire = False
    def _after_fork(obj):
        obj._threaded_acquire = False
    register_after_fork(self, _after_fork)

def coro_acquire(self, *args, **kwargs):
    def lock_acquired(fut):
        if fut.result():
            self._threaded_acquire = True

    out = self.run_in_executor(self._obj.acquire, *args, **kwargs)
    out.add_done_callback(lock_acquired)
    return out

class AioLock(AioBaseLock):
    delegate = Lock


class AioRLock(AioBaseLock):
    delegate = RLock

如果您不需要这种灵活性,可以简化实施过程:

class NonBlockBuilder(type):
    """ Metaclass for adding non-blocking versions of methods to a class.  

    Expects to find the following class attributes:
    nb_funcs - A list containing methods that need non-blocking wrappers
    delegate - The class to wrap (add non-blocking methods to)
    pool_workers - (optional) how many workers to put in the internal pool.

    The metaclass inserts a mixin (_ExecutorMixin) into the inheritence
    hierarchy of cls. This mixin provides methods that allow
    the non-blocking wrappers to do their work.

    """
    def __new__(cls, clsname, bases, dct, **kwargs):
        nbfunc_list = dct.get('nb_funcs', [])

        # Add _ExecutorMixin to bases.
        if _ExecutorMixin not in bases:
            bases += (_ExecutorMixin,)

        # Add non-blocking funcs to dct, but only if a definition
        # is not already provided by dct or one of our bases.
        for func in nbfunc_list:
            nb_name = 'nb_{}'.format(func)
            dct[nb_name] = cls.nbfunc_maker(func)

        return super(NonBlockBuilder, cls).__new__(cls, clsname, bases, dct)

    def __init__(cls, name, bases, dct):
        """ Properly initialize a non-blocking wrapper.

        Sets pool_workers and delegate on the class, and also
        adds an __init__ method to it that instantiates the
        delegate with the proper context.

        """
        super(NonBlockBuilder, cls).__init__(name, bases, dct)
        pool_workers = dct.get('pool_workers')
        cls.delegate = dct['delegate']

        # If we found a value for pool_workers, set it. If not,
        # ExecutorMixin sets a default that will be used.
        if pool_workers:
            cls.pool_workers = pool_workers

        # Here's the __init__ we want every wrapper class to use.
        # It just instantiates the delegate object.
        def init_func(self, *args, **kwargs):
            self._obj = self.delegate(*args, **kwargs)
        cls.__init__ = init_func

    @staticmethod
    def nbfunc_maker(func):
        def nb_func(self, *args, **kwargs):
            return self.run_in_executor(func, *args, **kwargs)
        return nb_func

*原始代码为here,供参考。

答案 1 :(得分:2)

我用来异步启动类方法的一种方法是创建一个池并用apply_async调用一些函数别名,而不是直接调用类方法。

假设您的课程版本更简单:

class Hardware:
    def __init__(self, stuff):
        self.stuff = stuff
        return

    def blocking_command(self, arg1):
        self.stuff.call_function(arg1)
        return

在模块的顶层,定义一个如下所示的新函数:

def _blocking_command(Hardware_obj, arg1):
    return Hardware_obj.blocking_command(Hardware_obj, arg1)

由于类和这个“别名”函数都是在模块的顶层定义的,因此它们是可选择的,您可以使用多处理库将它踢开:

import multiprocessing

hw_obj = Harware(stuff)
pool = multiprocessing.Pool()

results_obj = pool.apply_async(_blocking_command, (hw_obj, arg1))

您可以在结果对象中使用函数调用的结果。我喜欢这种方法,因为它使用相对少量的代码来使并行化更容易。具体来说,它只添加了几个两行函数而不是任何类,除了多处理之外不需要额外的导入。

注意:

  1. 不要将此用于需要修改对象属性的方法,但如果在设置了所有类属性之后使用它,则它可以正常工作,有效地处理类属性为“只读”。

  2. 您也可以在类方法中使用此方法来启动其他类方法,您只需要显式传递“self”。这可以允许您将浮动的“hardware_child_process”函数移动到类中。它仍然可以充当一堆异步进程的调度程序,但它会将该功能集中在您的Hardware类中。