我正在尝试将GridSearch用于十个交叉验证中的每一个中的最佳超参数,它与我以前的多类分类工作一起工作得很好,但这次不是多标签工作的情况。
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33)
clf = OneVsRestClassifier(LinearSVC())
C_range = 10.0 ** np.arange(-2, 9)
param_grid = dict(estimator__clf__C = C_range)
clf = GridSearchCV(clf, param_grid)
clf.fit(X_train, y_train)
我收到错误:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-65-dcf9c1d2e19d> in <module>()
6
7 clf = GridSearchCV(clf, param_grid)
----> 8 clf.fit(X_train, y_train)
/usr/local/lib/python2.7/site-packages/sklearn/grid_search.pyc in fit(self, X, y)
595
596 """
--> 597 return self._fit(X, y, ParameterGrid(self.param_grid))
598
599
/usr/local/lib/python2.7/site-packages/sklearn/grid_search.pyc in _fit(self, X, y,
parameter_iterable)
357 % (len(y), n_samples))
358 y = np.asarray(y)
--> 359 cv = check_cv(cv, X, y, classifier=is_classifier(estimator))
360
361 if self.verbose > 0:
/usr/local/lib/python2.7/site-packages/sklearn/cross_validation.pyc in _check_cv(cv, X,
y, classifier, warn_mask)
1365 needs_indices = None
1366 if classifier:
-> 1367 cv = StratifiedKFold(y, cv, indices=needs_indices)
1368 else:
1369 if not is_sparse:
/usr/local/lib/python2.7/site-packages/sklearn/cross_validation.pyc in __init__(self,
y, n_folds, indices, shuffle, random_state)
427 for test_fold_idx, per_label_splits in enumerate(zip(*per_label_cvs)):
428 for label, (_, test_split) in zip(unique_labels, per_label_splits):
--> 429 label_test_folds = test_folds[y == label]
430 # the test split can be too big because we used
431 # KFold(max(c, self.n_folds), self.n_folds) instead of
ValueError: boolean index array should have 1 dimension
可能指的是标签指示符的尺寸或格式。
print X_train.shape, y_train.shape
得到:
(147, 1024) (147, 6)
似乎GridSearch
本身就实现了StratifiedKFold
。
问题出现在具有多标签问题的分层K折叠策略中。
StratifiedKFold(y_train, 10)
给出
ValueError Traceback (most recent call last)
<ipython-input-87-884ffeeef781> in <module>()
----> 1 StratifiedKFold(y_train, 10)
/usr/local/lib/python2.7/site-packages/sklearn/cross_validation.pyc in __init__(self,
y, n_folds, indices, shuffle, random_state)
427 for test_fold_idx, per_label_splits in enumerate(zip(*per_label_cvs)):
428 for label, (_, test_split) in zip(unique_labels, per_label_splits):
--> 429 label_test_folds = test_folds[y == label]
430 # the test split can be too big because we used
431 # KFold(max(c, self.n_folds), self.n_folds) instead of
ValueError: boolean index array should have 1 dimension
目前使用传统的K-fold策略效果很好。 有没有任何方法可以实现分层K-fold到多标签分类?
答案 0 :(得分:6)
网格搜索会针对分类问题执行stratified cross-validation,但对于多标签任务,则不执行此操作;实际上,多标签分层是机器学习中尚未解决的问题。我最近遇到了同样的问题,我能找到的所有文献都是this article中提出的方法(其中的作者说他们找不到任何其他尝试来解决这个问题)。
答案 1 :(得分:0)
正如Fred Foo指出的那样,多标签任务没有实施分层交叉验证。另一种方法是在变换的标签空间中使用StratifiedKFold类scikit-learn,如建议here。
以下是示例python代码。
from sklearn.model_selection import StratifiedKFold
kf = StratifiedKFold(n_splits=n_splits, random_state=None, shuffle=shuffle)
for train_index, test_index in kf.split(X, lp.transform(y)):
X_train = X[train_index,:]
y_train = y[train_index,:]
X_test = X[test_index,:]
y_test = y[test_index,:]
# learn the classifier
classifier.fit(X_train, y_train)
# predict labels for test data
predictions = classifier.predict(X_test)
答案 2 :(得分:0)
签出scikit-multilearn package。该文档并不完美,但是this section演示了多标签分层。您可以使用iterative_train_test_split
函数。
还有iterative-stratification package,我认为它也实现了相同的想法。
我不确定,但是我认为他们俩都在实施this paper。