使用python,从给定字符串中提取常用短语或单词的最有效方法是什么?
例如,
string1="once upon a time there was a very large giant called Jack"
string2="a very long time ago was a very brave young man called Jack"
会回来:
["a","time","there","was a very","called Jack"]
如何有效地进行此操作(在我的情况下,我需要在数千个1000字的文档中执行此操作)?
答案 0 :(得分:2)
您可以split
每个字符串,然后intersect
set
s。
string1="once upon a time there was a very large giant called Jack"
string2="a very long time ago was a very brave young man called Jack"
set(string1.split()).intersection(set(string2.split()))
结果
set(['a', 'very', 'Jack', 'time', 'was', 'called'])
请注意,这仅匹配单个单词。你必须更具体地考虑你会考虑什么"短语"。最长的连续匹配子串?这可能会变得更加复杂。
答案 1 :(得分:1)
在自然语言处理中,您通常使用n-grams
从句子中提取常见的模式和序列。
在python中,您可以使用优秀的NLTK
模块。
为了计算和查找最常见的内容,您可以使用collections.Counter
。
以下是2克的示例:
from nltk.util import ngrams
from collections import Counter
from itertools import chain
string1="once upon a time there was a very large giant called Jack"
string2="a very long time ago was a very brave young man called Jack"
n = 2
ngrams1= ngrams(string1.split(" "), n)
ngrams2= ngrams(string2.split(" "), n)
counter= Counter(chain(ngrams1,ngrams2)) #count occurrences of each n-gram
print [k[0] for k,v in counter.items() if v>1] #print all ngrams that come up more than once
输出:
[('called', 'Jack'), ('was', 'a'), ('a', 'very')]
输出n=3
:
[('was', 'a', 'very')]
输出n=1
(没有元组):
['Jack', 'a', 'was', 'time', 'called', 'very']
答案 2 :(得分:1)
这是一个经典的动态编程问题。您需要做的就是为string1
构建一个后缀树,用词而不是字母(这是通常的公式)。这是一个illustrative example of a suffix tree。
s1
。string2
的所有后缀。s2
。s2
。s1
和s2
的每个节点的路径标签都是一个公共子字符串。此算法在this lecture note中简明扼要地解释。
对于两个长度为n
和m
的字符串,后缀树构造需要O(max(n,m))
,所有匹配的子字符串(在您的情况下,单词或短语)都可以在{ {1}}。
答案 3 :(得分:0)
几年后,但我在下面的“ Counter”中尝试过这种方式:
输入[]:
from collections import Counter
string1="once upon a time there was a very large giant called Jack"
string2="a very long time ago was a very brave young man called Jack"
string1 += ' ' + string2
string1 = string1.split()
count = Counter(string1)
tag_count = []
for n, c in count.most_common(10):
dics = {'tag': n, 'count': c}
tag_count.append(dics)
输出[]:
[{'tag': 'a', 'count': 4},
{'tag': 'very', 'count': 3},
{'tag': 'time', 'count': 2},
{'tag': 'was', 'count': 2},
{'tag': 'called', 'count': 2},
{'tag': 'Jack', 'count': 2},
{'tag': 'once', 'count': 1},
{'tag': 'upon', 'count': 1},
{'tag': 'there', 'count': 1},
{'tag': 'large', 'count': 1}]
希望这对某人有用:)