索引将排列排列为其他排名排列

时间:2014-09-22 12:52:36

标签: algorithm math language-agnostic permutation combinatorics

我正在考虑按字典顺序排列0,...,n-1的所有排列。我给了两个等级,i和j,并且要求找到将第i个排列应用于第j个排列所产生的排列的等级。

n = 3的几个例子:

p(3)= [1,2,0],p(4)= [2,0,1],结果= [0,1,2],等级= 0

鉴于i = j = 4,我们得到的[2,0,1]应用于[1,2,0],秩= 3。

到目前为止我想出的是:我通过Lehmer代码将等级转换为各自的排列,计算所需的排列,并通过Lehmer代码转换回排名。

有人能建议一种方法从其他两个等级中获得所需排列的等级,而不必实际计算排列吗?存储n! x n!数组不是一个选项。

-edit-请注意,如果其他一些排序可以实现这一点,我就不会遵循词典顺序。

-edit-这是n!由n! n = 3&的网格4,用于词典排名。将行i索引到列j以获取输出。请注意,n = 3网格与n = 4网格的左上角相同。

00|01|02|03|04|05|
01|00|03|02|05|04|
02|04|00|05|01|03|
03|05|01|04|00|02|
04|02|05|00|03|01|
05|03|04|01|02|00|

00|01|02|03|04|05|06|07|08|09|10|11|12|13|14|15|16|17|18|19|20|21|22|23|
01|00|03|02|05|04|07|06|09|08|11|10|13|12|15|14|17|16|19|18|21|20|23|22|
02|04|00|05|01|03|08|10|06|11|07|09|14|16|12|17|13|15|20|22|18|23|19|21|
03|05|01|04|00|02|09|11|07|10|06|08|15|17|13|16|12|14|21|23|19|22|18|20|
04|02|05|00|03|01|10|08|11|06|09|07|16|14|17|12|15|13|22|20|23|18|21|19|
05|03|04|01|02|00|11|09|10|07|08|06|17|15|16|13|14|12|23|21|22|19|20|18|
06|07|12|13|18|19|00|01|14|15|20|21|02|03|08|09|22|23|04|05|10|11|16|17|
07|06|13|12|19|18|01|00|15|14|21|20|03|02|09|08|23|22|05|04|11|10|17|16|
08|10|14|16|20|22|02|04|12|17|18|23|00|05|06|11|19|21|01|03|07|09|13|15|
09|11|15|17|21|23|03|05|13|16|19|22|01|04|07|10|18|20|00|02|06|08|12|14|
10|08|16|14|22|20|04|02|17|12|23|18|05|00|11|06|21|19|03|01|09|07|15|13|
11|09|17|15|23|21|05|03|16|13|22|19|04|01|10|07|20|18|02|00|08|06|14|12|
12|18|06|19|07|13|14|20|00|21|01|15|08|22|02|23|03|09|10|16|04|17|05|11|
13|19|07|18|06|12|15|21|01|20|00|14|09|23|03|22|02|08|11|17|05|16|04|10|
14|20|08|22|10|16|12|18|02|23|04|17|06|19|00|21|05|11|07|13|01|15|03|09|
15|21|09|23|11|17|13|19|03|22|05|16|07|18|01|20|04|10|06|12|00|14|02|08|
16|22|10|20|08|14|17|23|04|18|02|12|11|21|05|19|00|06|09|15|03|13|01|07|
17|23|11|21|09|15|16|22|05|19|03|13|10|20|04|18|01|07|08|14|02|12|00|06|
18|12|19|06|13|07|20|14|21|00|15|01|22|08|23|02|09|03|16|10|17|04|11|05|
19|13|18|07|12|06|21|15|20|01|14|00|23|09|22|03|08|02|17|11|16|05|10|04|
20|14|22|08|16|10|18|12|23|02|17|04|19|06|21|00|11|05|13|07|15|01|09|03|
21|15|23|09|17|11|19|13|22|03|16|05|18|07|20|01|10|04|12|06|14|00|08|02|
22|16|20|10|14|08|23|17|18|04|12|02|21|11|19|05|06|00|15|09|13|03|07|01|
23|17|21|11|15|09|22|16|19|05|13|03|20|10|18|04|07|01|14|08|12|02|06|00|

以下是n = 4的事实。为了紧凑,我把最后一个数字(总是为零)留下了。

000|001|010|011|020|021|100|101|110|111|120|121|200|201|210|211|220|221|300|301|310|311|320|321|
001|000|011|010|021|020|101|100|111|110|121|120|201|200|211|210|221|220|301|300|311|310|321|320|
010|020|000|021|001|011|110|120|100|121|101|111|210|220|200|221|201|211|310|320|300|321|301|311|
011|021|001|020|000|010|111|121|101|120|100|110|211|221|201|220|200|210|311|321|301|320|300|310|
020|010|021|000|011|001|120|110|121|100|111|101|220|210|221|200|211|201|320|310|321|300|311|301|
021|011|020|001|010|000|121|111|120|101|110|100|221|211|220|201|210|200|321|311|320|301|310|300|
100|101|200|201|300|301|000|001|210|211|310|311|010|011|110|111|320|321|020|021|120|121|220|221|
101|100|201|200|301|300|001|000|211|210|311|310|011|010|111|110|321|320|021|020|121|120|221|220|
110|120|210|220|310|320|010|020|200|221|300|321|000|021|100|121|301|311|001|011|101|111|201|211|
111|121|211|221|311|321|011|021|201|220|301|320|001|020|101|120|300|310|000|010|100|110|200|210|
120|110|220|210|320|310|020|010|221|200|321|300|021|000|121|100|311|301|011|001|111|101|211|201|
121|111|221|211|321|311|021|011|220|201|320|301|020|001|120|101|310|300|010|000|110|100|210|200|
200|300|100|301|101|201|210|310|000|311|001|211|110|320|010|321|011|111|120|220|020|221|021|121|
201|301|101|300|100|200|211|311|001|310|000|210|111|321|011|320|010|110|121|221|021|220|020|120|
210|310|110|320|120|220|200|300|010|321|020|221|100|301|000|311|021|121|101|201|001|211|011|111|
211|311|111|321|121|221|201|301|011|320|021|220|101|300|001|310|020|120|100|200|000|210|010|110|
220|320|120|310|110|210|221|321|020|300|010|200|121|311|021|301|000|100|111|211|011|201|001|101|
221|321|121|311|111|211|220|320|021|301|011|201|120|310|020|300|001|101|110|210|010|200|000|100|
300|200|301|100|201|101|310|210|311|000|211|001|320|110|321|010|111|011|220|120|221|020|121|021|
301|201|300|101|200|100|311|211|310|001|210|000|321|111|320|011|110|010|221|121|220|021|120|020|
310|210|320|110|220|120|300|200|321|010|221|020|301|100|311|000|121|021|201|101|211|001|111|011|
311|211|321|111|221|121|301|201|320|011|220|021|300|101|310|001|120|020|200|100|210|000|110|010|
320|220|310|120|210|110|321|221|300|020|200|010|311|121|301|021|100|000|211|111|201|011|101|001|
321|221|311|121|211|111|320|220|301|021|201|011|310|120|300|020|101|001|210|110|200|010|100|000|

2 个答案:

答案 0 :(得分:0)

如果除了R之外,你还没有与特定的P结合,我们可以重新定义排列函数以促进可能的答案。下面的函数newPerm将置换与R相关的列表,其具有与“索引到”的置换函数相同的一致性。

以下示例未针对效率进行优化(例如,排名/取消可以在O(n)中完成)。最后两行输出将重新定义的置换函数与“索引”置换函数进行比较 - 如您所见,它们在映射到置换集时都生成相同数量的唯一置换。函数f将是问题的答案。

Haskell代码:

import Data.List (sort,permutations)
import Data.Maybe (fromJust)

sortedPermutations = sort $ permutations [0,1,2,3,4,5,6]

rank p = fromJust (lookup p rs) where rs = zip sortedPermutations [0..]

unrank r = fromJust (lookup r ps) where ps = zip [0..] sortedPermutations

tradPerm p s = foldr (\a b -> s!!a : b) [] p

newPerm p s = unrank (f (rank p) (rank s))

f r1 r2 = let l = r1 - r2 in if l < 0 then length sortedPermutations + l else l

输出:

*Main Data.List> unrank 3
[0,1,2,3,5,6,4]

*Main Data.List> unrank 8
[0,1,2,4,5,3,6]

*Main Data.List> f 3 8
5035

*Main Data.List> newPerm [0,1,2,3,5,6,4] [0,1,2,4,5,3,6]
[6,5,4,3,0,2,1]

*Main Data.List> rank [6,5,4,3,0,2,1]
5035

*Main Data.List> length $ group $ sort $ map (tradPerm [1,2,5,0,4,3,6]) sortedPermutations
5040

*Main Data.List> length $ group $ sort $ map (newPerm [1,2,5,0,4,3,6]) sortedPermutations
5040

答案 1 :(得分:0)

我发现了一种在线性时间内在排列和排名之间进行转换的算法。这不是我想要的,但可能还不错。事实证明,我不关心词典顺序这一事实很重要。这种使用的排名很奇怪。我将给出两个函数,一个从一个等级转换为一个置换,另一个用于反转。

首先,取消(从排名到排列)

Initialize:
n = length(permutation)
r = desired rank
p = identity permutation of n elements [0, 1, ..., n]

unrank(n, r, p)
  if n > 0 then
    swap(p[n-1], p[r mod n])
    unrank(n-1, floor(r/n), p)
  fi
end

接下来,排名:

Initialize:
p = input permutation
q = inverse input permutation (in linear time, q[p[i]] = i for 0 <= i < n)
n = length(p)

rank(n, p, q)
  if n=1 then return 0 fi
  s = p[n-1]
  swap(p[n-1], p[q[n-1]])
  swap(q[s], q[n-1])
  return s + n * rank(n-1, p, q)
end

这是伪代码。对于我的项目,我会小心使用p的副本,所以在计算其等级时我不会改变它。

这两者的运行时间是O(n)。

有一篇很好的,可读的论文解释了为什么这样有效:排名&amp;通过Myrvold&amp; amp;和线性时间中的排名排列。 Ruskey,信息处理快报,第79卷,第6期,2001年9月30日,第281-284页。

http://webhome.cs.uvic.ca/~ruskey/Publications/RankPerm/MyrvoldRuskey.pdf