我在做了很多C#以及最近的Objective C之后,才回到C ++。
我之前做过的一件事就是为std :: map滚动我自己的迭代器适配器,它将仅反映值部分,而不是键值对。这是一个非常普遍和自然的事情。 C#为此工具提供了其Dictionary类的Keys和Values属性。类似地,Objective-C的NSDictionary具有allKeys和allValues。
由于我已经“离开”,Boost已经收购了Range和ForEach库,我现在正广泛使用它们。我想知道两者之间是否有相同的设施,但我找不到任何东西。
我正在考虑使用Boost的迭代器适配器来解决问题,但在我沿着这条路走下去之前,我想我会问这里有没有人知道Boost中的这样一个设施,还是其他现成的设施?
答案 0 :(得分:24)
替换上一个答案,以防其他人发现这个,就像我做的那样。从增强1.43开始,提供了一些常用的范围适配器。在这种情况下,您需要boost :: adapters :: map_values。相关的例子: http://www.boost.org/doc/libs/1_46_0/libs/range/doc/html/range/reference/adaptors/reference/map_values.html#range.reference.adaptors.reference.map_values.map_values_example
答案 1 :(得分:14)
我认为没有任何开箱即用的东西。你可以使用boost :: make_transform。
template<typename T1, typename T2> T2& take_second(const std::pair<T1, T2> &a_pair)
{
return a_pair.second;
}
void run_map_value()
{
map<int,string> a_map;
a_map[0] = "zero";
a_map[1] = "one";
a_map[2] = "two";
copy( boost::make_transform_iterator(a_map.begin(), take_second<int, string>),
boost::make_transform_iterator(a_map.end(), take_second<int, string>),
ostream_iterator<string>(cout, "\n")
);
}
答案 2 :(得分:8)
有一个增强范围适配器用于此目的。 见http://www.boost.org/doc/libs/1_53_0/libs/range/doc/html/range/reference/adaptors/reference/map_values.html
(这个例子来自那里)
int main(int argc, const char* argv[])
{
using namespace boost::assign;
using namespace boost::adaptors;
std::map<int,int> input;
for (int i = 0; i < 10; ++i)
input.insert(std::make_pair(i, i * 10));
boost::copy(
input | map_values,
std::ostream_iterator<int>(std::cout, ","));
return 0;
}
答案 3 :(得分:7)
继续大卫的回答,还有另一种可能性,即通过从boost :: transform_iterator创建一个派生类来放置boile。我在我的项目中使用这个解决方案:
namespace detail
{
template<bool IsConst, bool IsVolatile, typename T>
struct add_cv_if_c
{
typedef T type;
};
template<typename T>
struct add_cv_if_c<true, false, T>
{
typedef const T type;
};
template<typename T>
struct add_cv_if_c<false, true, T>
{
typedef volatile T type;
};
template<typename T>
struct add_cv_if_c<true, true, T>
{
typedef const volatile T type;
};
template<typename TestConst, typename TestVolatile, typename T>
struct add_cv_if: public add_cv_if_c<TestConst::value, TestVolatile::value, T>
{};
} // namespace detail
/** An unary function that accesses the member of class T specified in the MemberPtr template parameter.
The cv-qualification of T is preserved for MemberType
*/
template<typename T, typename MemberType, MemberType T::*MemberPtr>
struct access_member_f
{
// preserve cv-qualification of T for T::second_type
typedef typename detail::add_cv_if<
std::tr1::is_const<T>,
std::tr1::is_volatile<T>,
MemberType
>::type& result_type;
result_type operator ()(T& t) const
{
return t.*MemberPtr;
}
};
/** @short An iterator adaptor accessing the member called 'second' of the class the
iterator is pointing to.
*/
template<typename Iterator>
class accessing_second_iterator: public
boost::transform_iterator<
access_member_f<
// note: we use the Iterator's reference because this type
// is the cv-qualified iterated type (as opposed to value_type).
// We want to preserve the cv-qualification because the iterator
// might be a const_iterator e.g. iterating a const
// std::pair<> but std::pair<>::second_type isn't automatically
// const just because the pair is const - access_member_f is
// preserving the cv-qualification, otherwise compiler errors will
// be the result
typename std::tr1::remove_reference<
typename std::iterator_traits<Iterator>::reference
>::type,
typename std::iterator_traits<Iterator>::value_type::second_type,
&std::iterator_traits<Iterator>::value_type::second
>,
Iterator
>
{
typedef boost::transform_iterator<
access_member_f<
typename std::tr1::remove_reference<
typename std::iterator_traits<Iterator>::reference
>::type,
typename std::iterator_traits<Iterator>::value_type::second_type,
&std::iterator_traits<Iterator>::value_type::second
>,
Iterator
> baseclass;
public:
accessing_second_iterator():
baseclass()
{}
// note: allow implicit conversion from Iterator
accessing_second_iterator(Iterator it):
baseclass(it)
{}
};
这会导致更清晰的代码:
void run_map_value()
{
typedef map<int, string> a_map_t;
a_map_t a_map;
a_map[0] = "zero";
a_map[1] = "one";
a_map[2] = "two";
typedef accessing_second_iterator<a_map_t::const_iterator> ia_t;
// note: specify the iterator adaptor type explicitly as template type, enabling
// implicit conversion from begin()/end()
copy<ia_t>(a_map.begin(), a_map.end(),
ostream_iterator<string>(cout, "\n")
);
}