在python中并行运行多个文件的相同功能

时间:2014-09-17 11:25:22

标签: python celery

我正在尝试为多个文件并行运行一个函数。并且希望它们在一个点之前终止。

例如: 有一个循环

def main():
  for item in list:
     function_x(item)

  function_y(list)

现在我想要的是这个function_x应该并行运行所有项目。但是在调用function_y之前,应该为所有项完成此函数。 我打算用芹菜做这个。但无法理解如何做到这一点。

5 个答案:

答案 0 :(得分:4)

这是我的最终测试代码。

我需要做的就是使用多处理库。

from multiprocessing import Process
from time import sleep

Pros = []

def function_x(i):
    for j in range(0,5):
        sleep(3)
        print i

def function_y():
    print "done"

def main():
  for i in range(0,3):
     print "Thread Started"
     p = Process(target=function_x, args=(i,))
     Pros.append(p)
     p.start()

  # block until all the threads finish (i.e. block until all function_x calls finish)    
  for t in Pros:
     t.join()

  function_y()

答案 1 :(得分:3)

你可以使用线程。 thread.join是你需要的函数,这个函数阻塞直到线程结束 你可以这样做:

import threading
threads = []
def main():
  for item in list:
     t = threading.Thread(target=function_x, args=(item,))
     threads.append(t)
     t.start()

  # block until all the threads finish (i.e. until all function_a functions finish)    
  for t in threads:
     t.join()

  function_y(list)

答案 2 :(得分:2)

您可以使用Ray优雅地做到这一点,Ray documentation是一个用于编写并行和分布式Python的库。

只需用function_x声明@ray.remote,然后可以通过用function_x.remote调用它来并行执行,并可以用ray.get检索结果。

import ray
import time

ray.init()

@ray.remote
def function_x(item):
    time.sleep(1)
    return item

def function_y(list):
    pass

list = [1, 2, 3, 4]

# Process the items in parallel.
results = ray.get([function_x.remote(item) for item in list])

function_y(list)

查看{{3}}。

答案 3 :(得分:1)

Here is the documentation for celery groups,这就是我想你想要的。使用AsyncResult.get()代替AsyncResult.ready()来阻止。

答案 4 :(得分:0)

#!/bin/env python

import concurrent.futures

def function_x(item):
    return item * item


def function_y(lst):
    return [x * x for x in lst]


a_list = range(10)


if __name__ == '__main__':

    with concurrent.futures.ThreadPoolExecutor(10) as tp:

        future_to_function_x = {
            tp.submit(function_x, item): item
            for item in a_list
        }


    results = {}

    for future in concurrent.futures.as_completed(future_to_function_x):

        item = future_to_function_x[future]

        try:
            res = future.result()
        except Exception as e:
            print('Exception when processing item "%s": %s' % (item, e))
        else:
            results[item] = res


    print('results:', results)

    after = function_y(results.values())

    print('after:', after)

输出:

results: {0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25, 6: 36, 7: 49, 8: 64, 9: 81}
after: [0, 1, 16, 81, 256, 625, 1296, 2401, 4096, 6561]