这是我的代码
ggplot(df, aes(x=timepoint, y=mean, fill=group)) +
geom_bar(position=position_dodge(.3), colour="black", stat="identity", width=0.3, , binwidth=0) +
geom_errorbar(position=position_dodge(.3), width=.25, aes(ymin=mean, ymax=mean+sem)) +
scale_fill_manual(values=c("#FFFFFF", "#000000"), guide=FALSE) +
theme_bw() +
ylab(ylab) +
xlab("") +
# xlim("Baseline", "12w") +
scale_x_discrete(expand = c(0,0), limits=c("Baseline","12w")) +
scale_y_continuous(expand = c(0,0) ) +
theme(panel.border = element_blank(), panel.grid.major = element_blank(),
panel.grid.minor = element_blank(), axis.line = element_line(colour = "black"))
这是我的输出,我不想要,它在“基线”和“12w”之间的空间太大了:
如何删除栏之间的空格?
谢谢
df是这样的:
df <- structure(list(group = c("a1.d.ffa.mean Dysglyc", "a1.c.ffa.mean Control",
"b1.d.ffa.mean Dysglyc", "b1.c.ffa.mean Control"), timepoint = c("Baseline",
"Baseline", "12w", "12w"), mean = c(1.913509, 2.181959, 2.742249,
1.50846), sem = c(0.10663114, 0.08360294, 0.07890374, 0.08348542
), p.value = c(0.597738161, 1, 0.007885464, 1), p.value.t = c(0.04408,
1, 0.2455049, 1)), .Names = c("group", "timepoint", "mean", "sem",
"p.value", "p.value.t"), class = "data.frame", row.names = c(NA,
-4L))
df
group timepoint mean sem p.value p.value.t
1 a1.d.ffa.mean Dysglyc Baseline 1.913509 0.10663114 0.597738161 0.0440800
2 a1.c.ffa.mean Control Baseline 2.181959 0.08360294 1.000000000 1.0000000
3 b1.d.ffa.mean Dysglyc 12w 2.742249 0.07890374 0.007885464 0.2455049
4 b1.c.ffa.mean Control 12w 1.508460 0.08348542 1.000000000 1.0000000
答案 0 :(得分:8)
只需调整宽度:
ggplot(df, aes(x=timepoint, y=mean, fill=group)) +
geom_bar(position=position_dodge(0.9), colour="black", stat="identity", width=0.9, , binwidth=0) +
geom_errorbar(position=position_dodge(0.9), width=0.85, aes(ymin=mean, ymax=mean+sem)) +
theme_bw()
答案 1 :(得分:2)
这样的东西?
df <- structure(list(group = structure(c(2L, 1L, 4L, 3L), .Label = c("a1.c.ffa.mean Control",
"a1.d.ffa.mean Dysglyc", "b1.c.ffa.mean Control", "b1.d.ffa.mean Dysglyc"
), class = "factor"), timepoint = structure(c(1L, 1L, NA, NA), .Label = c("Baseline",
"12W"), class = "factor"), mean = c(1.913509, 2.181959, 2.742249,
1.50846), sem = c(0.10663114, 0.08360294, 0.07890374, 0.08348542
), p.value = c(0.597738161, 1, 0.007885464, 1), p.value.t = c(0.04408,
1, 0.2455049, 1)), .Names = c("group", "timepoint", "mean", "sem",
"p.value", "p.value.t"), row.names = c(NA, -4L), class = "data.frame")
使用
重新排序因子级别df$timepoint <- factor(df$timepoint,
levels= c('Baseline', '12W'))
绘制它
ggplot(df, aes(x=factor(timepoint), y=mean, fill=group)) +
geom_bar(position=position_dodge(.3), colour="black",
stat="identity", width=0.3, , binwidth=0) +
geom_errorbar(position=position_dodge(.3), width=.25,
aes(ymin=mean, ymax=mean+sem)) +
scale_fill_manual(values=c("#FFFFFF", "#000000","#FFFFFF", "#000000"),
guide=FALSE) +
theme_bw() +
labs(list(x="", y='skeletal muscle FFA g/100g')) +
# xlim("Baseline", "12w") +
scale_x_discrete(expand = c(0,0)) +
scale_y_continuous(expand = c(0,0) ) +
theme(panel.border = element_blank(), panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
axis.line = element_line(colour = "black"))
这与你的例子非常接近......