Python子进程:cmd退出时的回调

时间:2010-04-05 23:45:06

标签: python callback subprocess exit

我目前正在使用subprocess.Popen(cmd, shell=TRUE)

启动一个程序

我对Python很新,但感觉就像应该有一些api让我做类似的事情:

subprocess.Popen(cmd, shell=TRUE,  postexec_fn=function_to_call_on_exit)

我这样做是为了function_to_call_on_exit可以基于知道cmd已经退出(例如保持当前正在运行的外部进程数量的计数)来做某事

我认为我可以在一个将线程与Popen.wait()方法结合起来的类中简单地包装子进程,但是因为我还没有在Python中进行线程化,看起来这对于API来说可能很常见为了存在,我以为我会先尝试找一个。

提前致谢:)

7 个答案:

答案 0 :(得分:58)

你是对的 - 没有很好的API。你的第二点也是对的 - 设计一个使用线程为你做这个功能的功能非常简单。

import threading
import subprocess

def popenAndCall(onExit, popenArgs):
    """
    Runs the given args in a subprocess.Popen, and then calls the function
    onExit when the subprocess completes.
    onExit is a callable object, and popenArgs is a list/tuple of args that 
    would give to subprocess.Popen.
    """
    def runInThread(onExit, popenArgs):
        proc = subprocess.Popen(*popenArgs)
        proc.wait()
        onExit()
        return
    thread = threading.Thread(target=runInThread, args=(onExit, popenArgs))
    thread.start()
    # returns immediately after the thread starts
    return thread

即使在Python中使用线程也很容易,但请注意,如果onExit()的计算成本很高,那么你需要将它放在一个单独的进程中,而不是使用多处理(这样GIL不会减慢你的程序速度)。它实际上非常简单 - 您基本上只需将所有对threading.Thread的调用替换为multiprocessing.Process,因为它们(几乎)遵循相同的API。

答案 1 :(得分:15)

Python 3.2中有concurrent.futures个模块(可通过pip install futures获得较旧的Python< 3.2):

pool = Pool(max_workers=1)
f = pool.submit(subprocess.call, "sleep 2; echo done", shell=True)
f.add_done_callback(callback)

将在调用f.add_done_callback()

的同一进程中调用回调

完整计划

import logging
import subprocess
# to install run `pip install futures` on Python <3.2
from concurrent.futures import ThreadPoolExecutor as Pool

info = logging.getLogger(__name__).info

def callback(future):
    if future.exception() is not None:
        info("got exception: %s" % future.exception())
    else:
        info("process returned %d" % future.result())

def main():
    logging.basicConfig(
        level=logging.INFO,
        format=("%(relativeCreated)04d %(process)05d %(threadName)-10s "
                "%(levelname)-5s %(msg)s"))

    # wait for the process completion asynchronously
    info("begin waiting")
    pool = Pool(max_workers=1)
    f = pool.submit(subprocess.call, "sleep 2; echo done", shell=True)
    f.add_done_callback(callback)
    pool.shutdown(wait=False) # no .submit() calls after that point
    info("continue waiting asynchronously")

if __name__=="__main__":
    main()

输出

$ python . && python3 .
0013 05382 MainThread INFO  begin waiting
0021 05382 MainThread INFO  continue waiting asynchronously
done
2025 05382 Thread-1   INFO  process returned 0
0007 05402 MainThread INFO  begin waiting
0014 05402 MainThread INFO  continue waiting asynchronously
done
2018 05402 Thread-1   INFO  process returned 0

答案 2 :(得分:12)

我修改了Daniel G的答案,只是简单地传递subprocess.Popen args和kwargs而不是单独的tupple / list,因为我想在subprocess.Popen中使用关键字参数。

就我而言,我有一个方法postExec()我希望在subprocess.Popen('exe', cwd=WORKING_DIR)之后运行

使用下面的代码,它只会变成popenAndCall(postExec, 'exe', cwd=WORKING_DIR)

import threading
import subprocess

def popenAndCall(onExit, *popenArgs, **popenKWArgs):
    """
    Runs a subprocess.Popen, and then calls the function onExit when the
    subprocess completes.

    Use it exactly the way you'd normally use subprocess.Popen, except include a
    callable to execute as the first argument. onExit is a callable object, and
    *popenArgs and **popenKWArgs are simply passed up to subprocess.Popen.
    """
    def runInThread(onExit, popenArgs, popenKWArgs):
        proc = subprocess.Popen(*popenArgs, **popenKWArgs)
        proc.wait()
        onExit()
        return

    thread = threading.Thread(target=runInThread,
                              args=(onExit, popenArgs, popenKWArgs))
    thread.start()

    return thread # returns immediately after the thread starts

答案 3 :(得分:6)

我遇到了同样的问题,并使用multiprocessing.Pool解决了这个问题。涉及两个hacky技巧:

  1. 制作游泳池1的大小
  2. 在长度为1的可迭代内传递可迭代参数
  3. 结果是在完成时使用回调执行的一个函数

    def sub(arg):
        print arg             #prints [1,2,3,4,5]
        return "hello"
    
    def cb(arg):
        print arg             # prints "hello"
    
    pool = multiprocessing.Pool(1)
    rval = pool.map_async(sub,([[1,2,3,4,5]]),callback =cb)
    (do stuff) 
    pool.close()
    

    就我而言,我希望调用也是非阻塞的。工作得很漂亮

答案 4 :(得分:2)

我受到Daniel G.的启发并回答并实现了一个非常简单的用例 - 在我的工作中,我经常需要使用不同的参数重复调用相同的(外部)进程。我已经破解了确定每个特定呼叫何时完成的方法,但现在我有一个更清晰的方式来发出回调。

我喜欢这个实现,因为它很简单,但它允许我向多个处理器发出异步调用(注意我使用multiprocessing而不是threading)并在完成时收到通知。

我测试了示例程序,效果很好。请随意编辑并提供反馈。

import multiprocessing
import subprocess

class Process(object):
    """This class spawns a subprocess asynchronously and calls a
    `callback` upon completion; it is not meant to be instantiated
    directly (derived classes are called instead)"""
    def __call__(self, *args):
    # store the arguments for later retrieval
    self.args = args
    # define the target function to be called by
    # `multiprocessing.Process`
    def target():
        cmd = [self.command] + [str(arg) for arg in self.args]
        process = subprocess.Popen(cmd)
        # the `multiprocessing.Process` process will wait until
        # the call to the `subprocess.Popen` object is completed
        process.wait()
        # upon completion, call `callback`
        return self.callback()
    mp_process = multiprocessing.Process(target=target)
    # this call issues the call to `target`, but returns immediately
    mp_process.start()
    return mp_process

if __name__ == "__main__":

    def squeal(who):
    """this serves as the callback function; its argument is the
    instance of a subclass of Process making the call"""
    print "finished %s calling %s with arguments %s" % (
        who.__class__.__name__, who.command, who.args)

    class Sleeper(Process):
    """Sample implementation of an asynchronous process - define
    the command name (available in the system path) and a callback
    function (previously defined)"""
    command = "./sleeper"
    callback = squeal

    # create an instance to Sleeper - this is the Process object that
    # can be called repeatedly in an asynchronous manner
    sleeper_run = Sleeper()

    # spawn three sleeper runs with different arguments
    sleeper_run(5)
    sleeper_run(2)
    sleeper_run(1)

    # the user should see the following message immediately (even
    # though the Sleeper calls are not done yet)
    print "program continued"

示例输出:

program continued
finished Sleeper calling ./sleeper with arguments (1,)
finished Sleeper calling ./sleeper with arguments (2,)
finished Sleeper calling ./sleeper with arguments (5,)

以下是sleeper.c的源代码 - 我的样本“耗费时间”的外部流程

#include<stdlib.h>
#include<unistd.h>

int main(int argc, char *argv[]){
  unsigned int t = atoi(argv[1]);
  sleep(t);
  return EXIT_SUCCESS;
}

编译为:

gcc -o sleeper sleeper.c

答案 5 :(得分:0)

AFAIK没有这样的API,至少不在subprocess模块中。你需要自己滚动一些东西,可能是使用线程。

答案 6 :(得分:0)

从3.2开始,并发。(https://docs.python.org/3/library/concurrent.futures.html)中还提供了ProcesPoolExecutor。用法与上述ThreadPoolExecutor相同。通过executor.add_done_callback()附加退出出口回调。