我试图在频率Vs相角的傅里叶变换图中获得相位角的提供值。频率Vs相位角在所需频率处变得不连续,相位角的值在图中也是正确的。
from scipy import *
import sys
from math import atan2
x=arange(-10, 10,0.01)
T = 0.1
f = 1/T
omega = 2*pi/T
amp = 0.3
y1=2*amp*sin(omega*x + float(sys.argv[1])*pi/180.)
y2=amp*sin(3*omega*x + pi/4)
y = y1+y2
from scipy.fftpack import fft, fftfreq, fftshift
fft_y = fft(y)
im = imag(fft_y)
r = real(fft_y)
angle=arctan2(im,r)
angle1 = fftshift(angle)
Amp= ((fftshift(abs(fft_y)))/len(y))*2
q = fftshift(fftfreq(len(x), x[1]-x[0]))
from pylab import *
figure(1)
plot(x, y,'ro-')
figure(2)
plot(q, Amp, 'ro-')
figure(3)
plot(q, angle1*180/pi, 'g-')
show()