最简单的方法来绘制R中两个有序列表之间排名的变化?

时间:2014-09-11 07:11:51

标签: r graph plot ranking bipartite

我想知道是否有一种简单的方法来绘制R中有向二分图形式的2个列表之间元素位置的变化。例如,列表1和2是字符串的向量,不一定包含相同的元素:

list.1 <- c("a","b","c","d","e","f","g")

list.2 <- c("b","x","e","c","z","d","a")

我想生成类似于:

的内容

The sort of output I am after

我在使用igraph包时有轻微的抨击,但不能轻易地构建我想要的东西,我想象并希望它不会太难。

干杯。

4 个答案:

答案 0 :(得分:8)

这是一个简单的功能,可以做你想要的。基本上它使用match来匹配从一个向量到另一个向量的元素,并使用arrows来绘制箭头。

plotRanks <- function(a, b, labels.offset=0.1, arrow.len=0.1)
  {
  old.par <- par(mar=c(1,1,1,1))

  # Find the length of the vectors
  len.1 <- length(a)
  len.2 <- length(b)

  # Plot two columns of equidistant points
  plot(rep(1, len.1), 1:len.1, pch=20, cex=0.8, 
       xlim=c(0, 3), ylim=c(0, max(len.1, len.2)),
       axes=F, xlab="", ylab="") # Remove axes and labels
  points(rep(2, len.2), 1:len.2, pch=20, cex=0.8)

  # Put labels next to each observation
  text(rep(1-labels.offset, len.1), 1:len.1, a)
  text(rep(2+labels.offset, len.2), 1:len.2, b)

  # Now we need to map where the elements of a are in b
  # We use the match function for this job
  a.to.b <- match(a, b)

  # Now we can draw arrows from the first column to the second
  arrows(rep(1.02, len.1), 1:len.1, rep(1.98, len.2), a.to.b, 
         length=arrow.len, angle=20)
  par(old.par)
  }

一些示例图

par(mfrow=c(2,2))
plotRanks(c("a","b","c","d","e","f","g"),
          c("b","x","e","c","z","d","a"))
plotRanks(sample(LETTERS, 20), sample(LETTERS, 5))
plotRanks(c("a","b","c","d","e","f","g"), 1:10) # No matches
plotRanks(c("a", "b", "c", 1:5), c("a", "b", "c", 1:5)) # All matches
par(mfrow=c(1,1))

comparing ranks

答案 1 :(得分:7)

以下是使用igraph函数的解决方案。

rankchange <- function(list.1, list.2){
    grp = c(rep(0,length(list.1)),rep(1,length(list.2)))
    m = match(list.1, list.2)
    m = m + length(list.1)
    pairs = cbind(1:length(list.1), m)
    pairs = pairs[!is.na(pairs[,1]),]
    pairs = pairs[!is.na(pairs[,2]),]
    g = graph.bipartite(grp, as.vector(t(pairs)), directed=TRUE)
    V(g)$color =  c("red","green")[grp+1]
    V(g)$label = c(list.1, list.2)
    V(g)$x = grp
    V(g)$y = c(length(list.1):1, length(list.2):1)
    g
}

这会构建然后从您的向量绘制图形:

g = rankchange(list.1, list.2)
plot(g)

enter image description here

调整颜色方案和符号以适合使用igraph文档中详述的选项。

请注意,这未经过全面测试(仅针对您的示例数据进行了测试),但您可以看到它是如何根据代码构建二分图的。

答案 2 :(得分:4)

使用ggplot2:

v1 <- c("a","b","c","d","e","f","g")
v2 <- c("b","x","e","c","z","d","a")

o <- 0.05
DF <- data.frame(x = c(rep(1, length(v1)), rep(2, length(v2))),
                 x1 = c(rep(1 + o, length(v1)), rep(2 - o, length(v2))),
                 y = c(rev(seq_along(v1)), rev(seq_along(v2))),
                 g = c(v1, v2))

library(ggplot2)
library(grid)
ggplot(DF, aes(x=x, y=y, group=g, label=g)) +
  geom_path(aes(x=x1), arrow = arrow(length = unit(0.02,"npc")), 
            size=1, color="green") +
  geom_text(size=10) +
  theme_minimal() +
  theme(axis.title = element_blank(),
        axis.text = element_blank(),
        axis.ticks = element_blank(),
        panel.grid = element_blank())

resulting graph

这当然可以很容易地包含在一个函数中。

答案 3 :(得分:4)

这是用于数据帧的nico结果的推广:

plotRanks <- function(df, rank_col, time_col, data_col, color_col = NA, labels_offset=0.1, arrow_len=0.1, ...){

  time_vec <- df[ ,time_col]
  unique_dates <- unique(time_vec)
  unique_dates <- unique_dates[order(unique_dates)]

  rank_ls <- lapply(unique_dates, function(d){
    temp_df <- df[time_vec == d, ]
    temp_df <- temp_df[order(temp_df[ ,data_col], temp_df[ ,rank_col]), ]
    temp_d <- temp_df[ ,data_col]
    temp_rank <- temp_df[ ,rank_col]
    if(is.na(color_col)){
      temp_color = rep("blue", length(temp_d))
    }else{
      temp_color = temp_df[ ,color_col]
    }
    temp_rank <- temp_df[ ,rank_col]

    temp_ls <- list(temp_rank, temp_d, temp_color)
    names(temp_ls) <- c("ranking", "data", "color")
    temp_ls
  })

  first_rank <- rank_ls[[1]]$ranking
  first_data <- rank_ls[[1]]$data
  first_length <- length(first_rank)

  y_max <- max(sapply(rank_ls, function(l) length(l$ranking)))
  plot(rep(1, first_length), 1:first_length, pch=20, cex=0.8, 
       xlim=c(0, length(rank_ls) + 1), ylim = c(1, y_max), xaxt = "n", xlab = NA, ylab="Ranking", ...)

  text_paste <- paste(first_rank, "\n", "(", first_data, ")", sep = "")
  text(rep(1 - labels_offset, first_length), 1:first_length, text_paste)
  axis(1, at = 1:(length(rank_ls)), labels = unique_dates)

  for(i in 2:length(rank_ls)){
    j = i - 1
    ith_rank <- rank_ls[[i]]$ranking
    ith_data <- rank_ls[[i]]$data
    jth_color <- rank_ls[[j]]$color
    jth_rank <- rank_ls[[j]]$ranking
    ith_length <- length(ith_rank)
    jth_length <- length(jth_rank)
    points(rep(i, ith_length), 1:ith_length, pch = 20, cex = 0.8)
    i_to_j <- match(jth_rank, ith_rank)
    arrows(rep(i - 0.98, jth_length), 1:jth_length, rep(i - 0.02, ith_length), i_to_j
      , length = 0.1, angle = 10, col = jth_color)
    offset_choice <- ifelse(length(rank_ls) == 2, i + labels_offset, i - labels_offset)
    text_paste <- paste(ith_rank, "\n", "(", ith_data, ")", sep = "")
    text(rep(offset_choice, ith_length), 1:ith_length, text_paste)
  }
}

以下是使用presidents数据集的随意重塑的示例:

data(presidents)
years <- rep(1945:1974, 4)
n <- length(presidents)
q1 <- presidents[seq(1, n, 4)]
q2 <- presidents[seq(2, n, 4)]
q3 <- presidents[seq(3, n, 4)]
q4 <- presidents[seq(4, n, 4)]
quarters <- c(q1, q2, q3, q4)
q_label  <- c(rep("Q1", n / 4), rep("Q2", n / 4), rep("Q3", n / 4), rep("Q4", n / 4))
q_colors <- c(Q1 = "blue", Q2 = "red", Q3 = "green", Q4 = "orange")
q_colors <- q_colors[match(q_label, names(q_colors))]

new_prez <- data.frame(years, quarters, q_label, q_colors)
new_prez <- na.omit(new_prez)

png("C:/users/fasdfsdhkeos/desktop/prez.png", width = 15, height = 10, units = "in", res = 300)
  plotRanks(new_prez[new_prez$years %in% 1960:1970, ], "q_label", "years", "quarters", "q_colors")
dev.off()

这会生成一个时间序列排名图,如果需要跟踪某个观察结果,它会引入颜色:

enter image description here