我想知道是否有人使用sgeev来计算fortran中的e-vale / e-vecs。我目前有一个问题对齐矩阵,我不知道为什么。矩阵是
1 2 4 4 22 -3 22
3 3 8 -3 -22 -2 14
8 -2.3 16 2.5 22 1 7
-6 17 22 -9 22 17 -6
7 1 22 2.5 16 -2.3 8
14 -2 -22 -3 8 3 3
22 -3 22 4 4 2 1
它绝对是可对角线的,因为它在matlab中工作正常,但我不能让它在fortran中工作而且不知道为什么,
我使用sgeev的要求是正确的,因为它已经与其他矩阵一起测试过并且工作正常,返回缩放结果等
我知道矩阵的属性是第一列是最后一列的倒数等但我认为在fortran中使用一般矩阵形式会很好。如果有人能对此有所了解,那将非常感激
'program trial
implicit none
integer, parameter :: M=7
integer, parameter :: N=6
real :: qqq(7,7), ttt(7,7)
character*1 :: jobvl, jobvr
real :: wr(M)
real :: diag(M,M)
real :: wi(M)
real :: vl(M,M)
integer :: LDVL=M
integer :: IHI, ILO
real :: vr(M,M)
integer :: LDVR=M
real :: work(4*M)
integer :: lwork=4*M
integer :: info, infonow, check
character (len=40) :: print_file
integer :: filenumber=1
integer :: r, rr, rrr
qqq(1,1)=1
qqq(1,2)=2
qqq(1,3)=4
qqq(1,4)=4
qqq(1,5)=22
qqq(1,6)=-3
qqq(1,7)=22
qqq(2,1)=3
qqq(2,2)=3
qqq(2,3)=8
qqq(2,4)=-3
qqq(2,5)=-22
qqq(2,6)=-2
qqq(2,7)=14
qqq(3,1)=8
qqq(3,2)=-2.3
qqq(3,3)=16
qqq(3,4)=2.5
qqq(3,5)=22
qqq(3,6)=1
qqq(3,7)=7
qqq(4,1)=-6
qqq(4,2)=17
qqq(4,3)=22
qqq(4,4)=-9
qqq(4,5)=22
qqq(4,6)=17
qqq(4,7)=-6
qqq(5,1)=7
qqq(5,2)=1
qqq(5,3)=22
qqq(5,4)=2.5
qqq(5,5)=16
qqq(5,6)=-2.3
qqq(5,7)=8
qqq(6,1)=14
qqq(6,2)=-2
qqq(6,3)=-22
qqq(6,4)=-3
qqq(6,5)=8
qqq(6,6)=3
qqq(6,7)=3
qqq(7,1)=22
qqq(7,2)=-3
qqq(7,3)=22
qqq(7,4)=4
qqq(7,5)=4
qqq(7,6)=2
qqq(7,7)=1
do rr=1,7
do r=1,7
ttt(r,rr)=qqq(r,rr)
end do
end do
jobvl='V'
jobvr='V'
call SGEEV(jobvl,jobvr,M,qqq,M,wr,wi,vl,LDVL,vr&
,LDVR,work,lwork,info)
do rr=1,N+1
do r=1,N+1
if (r==rr) then
diag(r,rr)=wr(r)
else
diag(r,rr)=0
end if
end do
end do
write(*,*) wr
vl=transpose(vl)`
答案 0 :(得分:2)
有几个问题需要解决:
1)矩阵的最后四个特征值是复杂的。当你忽略它们时,你无法得到正确的结果。
2)共轭特征值的特征向量也很复杂,是特征值的报告特征向量的组合。
通过切换到复杂变体CGEEV
可以解决这两个问题。
最后一点是,如果您的矩阵qqq = vr' * diag(wr) * vr
是隐士或真正对称的话,对角线形式qqq
通常只能保留。
在您的情况下,您必须计算矩阵vr
的倒数。另一种可能性是从你的特征向量生成一个标准正交系统,matlab
可能会默认为你做。