我有以下数据集:
Location Type FromDate ToDate 1 2 3 4 5
A 1 12-Jul 13-Jul 2 4 0 1 2
A 2 12-Jul 13-Jul 0 0 1 4 1
B 1 12-Jul 13-Jul 0 1 1 3 1
B 2 12-Jul 13-Jul 1 0 0 0 1
C 1 12-Jul 13-Jul 2 3 1 5 0
C 2 12-Jul 13-Jul 3 3 1 0 0
如何在R中为每个位置创建条形图,包括第1天和第5天的类型1和2?
答案 0 :(得分:1)
一种稍微替代的解决方案,而不是使用reshape2
和plyr
使用dplyr
和tidyr
。后一种组合使用了越来越受欢迎的管道。
首先阅读数据:
df <- read.table(header=TRUE, text="Location Type FromDate ToDate 1 2 3 4 5
A 1 12-Jul 13-Jul 2 4 0 1 2
A 2 12-Jul 13-Jul 0 0 1 4 1
B 1 12-Jul 13-Jul 0 1 1 3 1
B 2 12-Jul 13-Jul 1 0 0 0 1
C 1 12-Jul 13-Jul 2 3 1 5 0
C 2 12-Jul 13-Jul 3 3 1 0 0")
# remove the X-es which are put in front of the days
names(df) <- gsub("X","",names(df))
加载所需的库:
library(dplyr)
library(tidyr)
library(ggplot2)
将数据从宽格式转换为长格式:
df.m <- df %>% gather(day,value,5:9)
创建情节:
ggplot(data=df.m, aes(x=day, y=value, fill=as.factor(Type))) +
geom_bar(stat="identity", position="dodge") +
xlab("Day of the week") +
scale_fill_discrete("Type\nof\nsomething\n") +
facet_grid(Location ~ ., labeller=label_both) +
theme_bw() +
theme(axis.title.y=element_blank())
导致:
但是,考虑到您的数据,折线图可能是更好的可视化:
ggplot(data=df.m, aes(x=day, y=value, color=as.factor(Type), group=as.factor(Type))) +
geom_line(size=1.5) +
xlab("Days") +
scale_color_discrete("Type\nof\nsomething\n") +
facet_grid(Location ~ ., labeller=label_both) +
theme_bw() +
theme(axis.title.y=element_blank())
导致:
答案 1 :(得分:0)
您应该更准确地澄清您的问题,以便读者准确了解您的需求。您还可以通过解释已经尝试过的内容来展示解决问题的方法。
因此我只能猜到你想要的东西,这是我的建议:
加载所需的包:
require(ggplot2)
require(reshape2)
require(plyr)
重新创建你的df:
location = c('A','A','B','B','C','C')
type = rep(c(1,2),3)
fdate = rep('12-Jul', 6)
tdate = rep('13-Jul', 6)
v1 = c(2,0,0,1,2,3)
v2 = c(4,0,1,0,3,3)
v3 = c(0,1,1,0,1,1)
v4 = c(1,4,3,0,5,0)
v5 = c(2,1,1,1,0,0)
dat = data.frame(location, type, fdate, tdate, v1, v2, v3, v4, v5)
重新排列绘图数据:
melted = melt(dat, id.vars=c('location', 'type', 'fdate', 'tdate'))
sums = ddply(melted, c('fdate', 'tdate', 'location', 'type', 'variable'),
summarise, sum=sum(value))
用ggplot2绘图:
ggplot(aes(x=variable, y=sum, fill=as.factor(type)), data=sums) +
geom_bar(stat="identity", position="dodge") +
facet_grid(location ~ .)
编辑:使用您发布的确切数据框:
# read data
dat2 <- read.table(header=T, text="Location Type FromDate ToDate 1 2 3 4 5
A 1 12-Jul 13-Jul 2 4 0 1 2
A 2 12-Jul 13-Jul 0 0 1 4 1
B 1 12-Jul 13-Jul 0 1 1 3 1
B 2 12-Jul 13-Jul 1 0 0 0 1
C 1 12-Jul 13-Jul 2 3 1 5 0
C 2 12-Jul 13-Jul 3 3 1 0 0")
# rearranging data for plotting
melted = melt(dat2, id.vars=c('Location', 'Type', 'FromDate', 'ToDate'))
sums = ddply(melted, c('FromDate', 'ToDate', 'Location', 'Type', 'variable'),
summarise, sum=sum(value))
# plot with ggplot2
ggplot(aes(x=variable, y=sum, fill=as.factor(Type)), data=sums) +
geom_bar(stat="identity", position="dodge") +
facet_grid(Location ~ .)