python相当于R表

时间:2014-09-07 13:47:12

标签: python r frequency

我有一个清单

[[12, 6], [12, 0], [0, 6], [12, 0], [12, 0], [6, 0], [12, 6], [0, 6], [12, 0], [0, 6], [0, 6], [12, 0], [0, 6], [6, 0], [6, 0], [12, 0], [6, 0], [12, 0], [12, 0], [0, 6], [0, 6], [12, 6], [6, 0], [6, 0], [12, 6], [12, 0], [12, 0], [0, 6], [6, 0], [12, 6], [12, 6], [12, 6], [12, 0], [12, 0], [12, 0], [12, 0], [12, 6], [12, 0], [12, 0], [12, 6], [0, 6], [0, 6], [6, 0], [12, 6], [12, 6], [12, 6], [12, 6], [12, 6], [12, 0], [0, 6], [6, 0], [12, 0], [0, 6], [12, 6], [12, 6], [0, 6], [12, 0], [6, 0], [6, 0], [12, 6], [12, 0], [0, 6], [12, 0], [12, 0], [12, 0], [6, 0], [12, 6], [12, 6], [12, 6], [12, 6], [0, 6], [12, 0], [12, 6], [0, 6], [0, 6], [12, 0], [0, 6], [12, 6], [6, 0], [12, 6], [12, 6], [12, 0], [12, 0], [12, 6], [0, 6], [6, 0], [12, 0], [6, 0], [12, 0], [12, 0], [12, 6], [12, 0], [6, 0], [12, 6], [6, 0], [12, 0], [6, 0], [12, 0], [6, 0], [6, 0]]

我想计算此列表中每个元素的频率。 像

这样的东西
freq[[12,6]] = 40

在R中,可以使用table函数获得。 python3中有类似的内容吗?

7 个答案:

答案 0 :(得分:113)

Pandas有一个名为value_counts()的内置函数。

示例:如果您的DataFrame有一个值为0和1的列,并且您想要计算每个列的总频率,那么只需使用它:

df.colName.value_counts()

答案 1 :(得分:29)

Counter库中的collections对象将起到这样的作用。

from collections import Counter

x = [[12, 6], [12, 0], [0, 6], [12, 0], [12, 0], [6, 0], [12, 6], [0, 6], [12, 0], [0, 6], [0, 6], [12, 0], [0, 6], [6, 0], [6, 0], [12, 0], [6, 0], [12, 0], [12, 0], [0, 6], [0, 6], [12, 6], [6, 0], [6, 0], [12, 6], [12, 0], [12, 0], [0, 6], [6, 0], [12, 6], [12, 6], [12, 6], [12, 0], [12, 0], [12, 0], [12, 0], [12, 6], [12, 0], [12, 0], [12, 6], [0, 6], [0, 6], [6, 0], [12, 6], [12, 6], [12, 6], [12, 6], [12, 6], [12, 0], [0, 6], [6, 0], [12, 0], [0, 6], [12, 6], [12, 6], [0, 6], [12, 0], [6, 0], [6, 0], [12, 6], [12, 0], [0, 6], [12, 0], [12, 0], [12, 0], [6, 0], [12, 6], [12, 6], [12, 6], [12, 6], [0, 6], [12, 0], [12, 6], [0, 6], [0, 6], [12, 0], [0, 6], [12, 6], [6, 0], [12, 6], [12, 6], [12, 0], [12, 0], [12, 6], [0, 6], [6, 0], [12, 0], [6, 0], [12, 0], [12, 0], [12, 6], [12, 0], [6, 0], [12, 6], [6, 0], [12, 0], [6, 0], [12, 0], [6, 0], [6, 0]]

# Since the elements passed to a `Counter` must be hashable, we have to change the lists to tuples.
x = [tuple(element) for element in x]

freq = Counter(x)

print freq[(12,6)]

# Result:  28

答案 2 :(得分:26)

import pandas
x = [[12, 6], [12, 0], [0, 6], [12, 0], [12, 0], [6, 0], [12, 6], [0, 6], [12, 0], [0, 6], [0, 6], [12, 0], [0, 6], [6, 0], [6, 0], [12, 0], [6, 0], [12, 0], [12, 0], [0, 6], [0, 6], [12, 6], [6, 0], [6, 0], [12, 6], [12, 0], [12, 0], [0, 6], [6, 0], [12, 6], [12, 6], [12, 6], [12, 0], [12, 0], [12, 0], [12, 0], [12, 6], [12, 0], [12, 0], [12, 6], [0, 6], [0, 6], [6, 0], [12, 6], [12, 6], [12, 6], [12, 6], [12, 6], [12, 0], [0, 6], [6, 0], [12, 0], [0, 6], [12, 6], [12, 6], [0, 6], [12, 0], [6, 0], [6, 0], [12, 6], [12, 0], [0, 6], [12, 0], [12, 0], [12, 0], [6, 0], [12, 6], [12, 6], [12, 6], [12, 6], [0, 6], [12, 0], [12, 6], [0, 6], [0, 6], [12, 0], [0, 6], [12, 6], [6, 0], [12, 6], [12, 6], [12, 0], [12, 0], [12, 6], [0, 6], [6, 0], [12, 0], [6, 0], [12, 0], [12, 0], [12, 6], [12, 0], [6, 0], [12, 6], [6, 0], [12, 0], [6, 0], [12, 0], [6, 0], [6, 0]] 
ps = pandas.Series([tuple(i) for i in x])
counts = ps.value_counts()
print counts

你会得到如下结果:

(12, 0)    33
(12, 6)    28
(6, 0)     20
(0, 6)     19

对于[(12,6)],您将获得确切的号码,此处为28

更多关于pandas,这是功能强大的Python数据分析工具包,您可以阅读官方文档:http://pandas.pydata.org/pandas-docs/stable/

更新:

如果订单无关紧要,请使用已排序: 结果之后ps = pandas.Series([tuple(sorted(i)) for i in x])

(0, 6)     39
(0, 12)    33
(6, 12)    28

答案 3 :(得分:13)

假设您需要将数据转换为pandas DataFrame,以便您拥有

L = [[12, 6], [12, 0], [0, 6], [12, 0], [12, 0], [6, 0], [12, 6], [0, 6], [12, 0], [0, 6], [0, 6], [12, 0], [0, 6], [6, 0], [6, 0], [12, 0], [6, 0], [12, 0], [12, 0], [0, 6], [0, 6], [12, 6], [6, 0], [6, 0], [12, 6], [12, 0], [12, 0], [0, 6], [6, 0], [12, 6], [12, 6], [12, 6], [12, 0], [12, 0], [12, 0], [12, 0], [12, 6], [12, 0], [12, 0], [12, 6], [0, 6], [0, 6], [6, 0], [12, 6], [12, 6], [12, 6], [12, 6], [12, 6], [12, 0], [0, 6], [6, 0], [12, 0], [0, 6], [12, 6], [12, 6], [0, 6], [12, 0], [6, 0], [6, 0], [12, 6], [12, 0], [0, 6], [12, 0], [12, 0], [12, 0], [6, 0], [12, 6], [12, 6], [12, 6], [12, 6], [0, 6], [12, 0], [12, 6], [0, 6], [0, 6], [12, 0], [0, 6], [12, 6], [6, 0], [12, 6], [12, 6], [12, 0], [12, 0], [12, 6], [0, 6], [6, 0], [12, 0], [6, 0], [12, 0], [12, 0], [12, 6], [12, 0], [6, 0], [12, 6], [6, 0], [12, 0], [6, 0], [12, 0], [6, 0], [6, 0]]
df = pd.DataFrame(L, columns=('a', 'b'))

然后您可以使用this answer

按照groupby.size()中的建议进行操作
tab = df.groupby(['a', 'b']).size()

tab如下所示:

In [5]: tab
Out[5]:
a   b
0   6    19
6   0    20
12  0    33
    6    28
dtype: int64

可以使用unstack()轻松更改为表格形式:

In [6]: tab.unstack()
Out[6]:
b      0     6
a
0    NaN  19.0
6   20.0   NaN
12  33.0  28.0

Fill NaNsconvert to int自由活动!

答案 4 :(得分:1)

恕我直言,熊猫为这个"制表提供了更好的解决方案。问题:

一个维度:

my_tab = pd.crosstab(index = df["feature_you_r_interested_in"],
                              columns="count")

比例计数:

my_tab/my_tab.sum()

二维(总计):

cross = pd.crosstab(index=df["feat1"], 
                             columns=df["feat2"],
                             margins=True)

cross

我非常感谢这个博客:

http://hamelg.blogspot.com.br/2015/11/python-for-data-analysis-part-19_17.html

答案 5 :(得分:0)

您可能可以通过列表理解进行一维计数。

L = [[12, 6], [12, 0], [0, 6], [12, 0], [12, 0], [6, 0], [12, 6], [0, 6], [12, 0], [0, 6], [0, 6], [12, 0], [0, 6], [6, 0], [6, 0], [12, 0], [6, 0], [12, 0], [12, 0], [0, 6], [0, 6], [12, 6], [6, 0], [6, 0], [12, 6], [12, 0], [12, 0], [0, 6], [6, 0], [12, 6], [12, 6], [12, 6], [12, 0], [12, 0], [12, 0], [12, 0], [12, 6], [12, 0], [12, 0], [12, 6], [0, 6], [0, 6], [6, 0], [12, 6], [12, 6], [12, 6], [12, 6], [12, 6], [12, 0], [0, 6], [6, 0], [12, 0], [0, 6], [12, 6], [12, 6], [0, 6], [12, 0], [6, 0], [6, 0], [12, 6], [12, 0], [0, 6], [12, 0], [12, 0], [12, 0], [6, 0], [12, 6], [12, 6], [12, 6], [12, 6], [0, 6], [12, 0], [12, 6], [0, 6], [0, 6], [12, 0], [0, 6], [12, 6], [6, 0], [12, 6], [12, 6], [12, 0], [12, 0], [12, 6], [0, 6], [6, 0], [12, 0], [6, 0], [12, 0], [12, 0], [12, 6], [12, 0], [6, 0], [12, 6], [6, 0], [12, 0], [6, 0], [12, 0], [6, 0], [6, 0]]
countey = [tuple(x) for x in L]
freq = {x:countey.count(x) for x in set(countey)}

In [2]: %timeit {x:countey.count(x) for x in set(countey)}
        100000 loops, best of 3: 15.2 µs per loop   

In [4]: print(freq)
Out[4]: {(0, 6): 19, (6, 0): 20, (12, 0): 33, (12, 6): 28}

In [5]: print(freq[(12,6)])
Out[5]: 28

答案 6 :(得分:0)

在Numpy中,我发现最好的方法是使用unique,例如:

import numpy as np

# OPs data
arr = np.array([[12, 6], [12, 0], [0, 6], [12, 0], [12, 0], [6, 0], [12, 6], [0, 6], [12, 0], [0, 6], [0, 6], [12, 0], [0, 6], [6, 0], [6, 0], [12, 0], [6, 0], [12, 0], [12, 0], [0, 6], [0, 6], [12, 6], [6, 0], [6, 0], [12, 6], [12, 0], [12, 0], [0, 6], [6, 0], [12, 6], [12, 6], [12, 6], [12, 0], [12, 0], [12, 0], [12, 0], [12, 6], [12, 0], [12, 0], [12, 6], [0, 6], [0, 6], [6, 0], [12, 6], [12, 6], [12, 6], [12, 6], [12, 6], [12, 0], [0, 6], [6, 0], [12, 0], [0, 6], [12, 6], [12, 6], [0, 6], [12, 0], [6, 0], [6, 0], [12, 6], [12, 0], [0, 6], [12, 0], [12, 0], [12, 0], [6, 0], [12, 6], [12, 6], [12, 6], [12, 6], [0, 6], [12, 0], [12, 6], [0, 6], [0, 6], [12, 0], [0, 6], [12, 6], [6, 0], [12, 6], [12, 6], [12, 0], [12, 0], [12, 6], [0, 6], [6, 0], [12, 0], [6, 0], [12, 0], [12, 0], [12, 6], [12, 0], [6, 0], [12, 6], [6, 0], [12, 0], [6, 0], [12, 0], [6, 0], [6, 0]])

values, counts = np.unique(arr, axis=0, return_counts=True)

# into a dict for presentation
{tuple(a):b for a,b in zip(values, counts)}

给我:{(0, 6): 19, (6, 0): 20, (12, 0): 33, (12, 6): 28} 匹配其他答案

此示例比我通常看到的要复杂一些,因此需要axis=0选项,如果您只是想在各处使用唯一值,那么您可能会错过:

# generate random values
x = np.random.negative_binomial(10, 10/(6+10), 100000)

# get table
values, counts = np.unique(x, return_counts=True)

# plot
import matplotlib.pyplot as plt
plt.vlines(values, 0, counts, lw=2)

matplotlib output

R似乎使这种事情更加方便!上面的Python代码只是plot(table(rnbinom(100000, 10, mu=6)))