这是一个普遍的问题,当我使用gcc 4.4将一个非常大/小的SIGNED整数转换为浮点数时会发生什么。
我在进行投射时会看到一些奇怪的行为。以下是一些例子:
MUSTBE是用这种方法获得的:
float f = (float)x;
unsigned int r;
memcpy(&r, &f, sizeof(unsigned int));
./btest -f float_i2f -1 0x80800001
input: 10000000100000000000000000000001
absolute value: 01111111011111111111111111111111
exponent: 10011101
mantissa: 00000000011111101111111111111111 (right shifted absolute value)
EXPECT: 11001110111111101111111111111111 (sign|exponent|mantissa)
MUST BE: 11001110111111110000000000000000 (sign ok, exponent ok,
mantissa???)
./btest -f float_i2f -1 0x3f7fffe0
EXPECT: 01001110011111011111111111111111
MUST BE: 01001110011111100000000000000000
./btest -f float_i2f -1 0x80004999
EXPECT: 11001110111111111111111101101100
MUST BE: 11001110111111111111111101101101 (<- 1 added at the end)
令我困扰的是,尾数在两个示例中都不同,如果我只是将我的整数值向右移动。例如,最后的零。它们来自哪里?
我只在大/小值上看到这种行为。 -2 ^ 24,2 ^ 24范围内的值可以正常工作。
我想知道是否有人可以告诉我这里发生了什么。对非常大/小的价值采取了哪些步骤。
这是一个问题的补充:function to convert float to int (huge integers)这不像这里的一般。
EDIT 代码:
unsigned float_i2f(int x) {
if (x == 0) return 0;
/* get sign of x */
int sign = (x>>31) & 0x1;
/* absolute value of x */
int a = sign ? ~x + 1 : x;
/* calculate exponent */
int e = 158;
int t = a;
while (!(t >> 31) & 0x1) {
t <<= 1;
e--;
};
/* calculate mantissa */
int m = (t >> 8) & ~(((0x1 << 31) >> 8 << 1));
m &= 0x7fffff;
int res = sign << 31;
res |= (e << 23);
res |= m;
return res;
}
编辑2:
在Adams的评论和对Write Great Code一书的引用之后,我用舍入更新了我的例行程序。我仍然得到一些舍入错误(幸好现在只有1位关闭)。
现在,如果我进行测试运行,我会得到大部分好结果,但有几个舍入错误:
input: 0xfefffff5
result: 11001011100000000000000000000101
GOAL: 11001011100000000000000000000110 (1 too low)
input: 0x7fffff
result: 01001010111111111111111111111111
GOAL: 01001010111111111111111111111110 (1 too high)
unsigned float_i2f(int x) {
if (x == 0) return 0;
/* get sign of x */
int sign = (x>>31) & 0x1;
/* absolute value of x */
int a = sign ? ~x + 1 : x;
/* calculate exponent */
int e = 158;
int t = a;
while (!(t >> 31) & 0x1) {
t <<= 1;
e--;
};
/* mask to check which bits get shifted out when rounding */
static unsigned masks[24] = {
0, 1, 3, 7,
0xf, 0x1f,
0x3f, 0x7f,
0xff, 0x1ff,
0x3ff, 0x7ff,
0xfff, 0x1fff,
0x3fff, 0x7fff,
0xffff, 0x1ffff,
0x3ffff, 0x7ffff,
0xfffff, 0x1fffff,
0x3fffff, 0x7fffff
};
/* mask to check wether round up, or down */
static unsigned HOmasks[24] = {
0,
1, 2, 4, 0x8, 0x10, 0x20, 0x40, 0x80,
0x100, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000, 0x8000, 0x10000, 0x20000, 0x40000, 0x80000, 0x100000, 0x200000, 0x400000
};
int S = a & masks[8];
int m = (t >> 8) & ~(((0x1 << 31) >> 8 << 1));
m &= 0x7fffff;
if (S > HOmasks[8]) {
/* round up */
m += 1;
} else if (S == HOmasks[8]) {
/* round down */
m = m + (m & 1);
}
/* special case where last bit of exponent is also set in mantissa
* and mantissa itself is 0 */
if (m & (0x1 << 23)) {
e += 1;
m = 0;
}
int res = sign << 31;
res |= (e << 23);
res |= m;
return res;
}
有人知道问题出在哪里吗?
答案 0 :(得分:3)
32位float
使用指数的某些位,因此无法准确表示所有32位整数值。
64位double
可以准确存储任何32位整数值。
Wikipedia在IEEE 754浮点上有一个缩写条目,以及IEEE 754-1985处浮点数内部的许多细节 - 当前标准是IEEE 754:2008。它注意到32位浮点数对于符号使用一位,对指数使用8位,为尾数留下23个显式位和1个隐式位,这就是为什么绝对值高达2 24 的原因可能是完全代表。
我认为很明显32位整数不能完全存储到32位浮点数中。我的问题是:如果我存储一个大于2 ^ 24或更小-2 ^ 24的整数会发生什么?我怎么能复制它?
一旦绝对值大于2 24 ,整数值就不能精确地表示在32位float
的尾数的24位有效数字中,所以只有前导24位数字可靠。浮点舍入也开始了。
您可以使用与此类似的代码进行演示: #包括 #include
typedef union Ufloat
{
uint32_t i;
float f;
} Ufloat;
static void dump_value(uint32_t i, uint32_t v)
{
Ufloat u = { .i = v };
printf("0x%.8" PRIX32 ": 0x%.8" PRIX32 " = %15.7e = %15.6A\n", i, v, u.f, u.f);
}
int main(void)
{
uint32_t lo = 1 << 23;
uint32_t hi = 1 << 28;
Ufloat u;
for (uint32_t v = lo; v < hi; v <<= 1)
{
u.f = v;
dump_value(v, u.i);
}
lo = (1 << 24) - 16;
hi = lo + 64;
for (uint32_t v = lo; v < hi; v++)
{
u.f = v;
dump_value(v, u.i);
}
return 0;
}
示例输出:
0x00800000: 0x4B000000 = 8.3886080e+06 = 0X1.000000P+23
0x01000000: 0x4B800000 = 1.6777216e+07 = 0X1.000000P+24
0x02000000: 0x4C000000 = 3.3554432e+07 = 0X1.000000P+25
0x04000000: 0x4C800000 = 6.7108864e+07 = 0X1.000000P+26
0x08000000: 0x4D000000 = 1.3421773e+08 = 0X1.000000P+27
0x00FFFFF0: 0x4B7FFFF0 = 1.6777200e+07 = 0X1.FFFFE0P+23
0x00FFFFF1: 0x4B7FFFF1 = 1.6777201e+07 = 0X1.FFFFE2P+23
0x00FFFFF2: 0x4B7FFFF2 = 1.6777202e+07 = 0X1.FFFFE4P+23
0x00FFFFF3: 0x4B7FFFF3 = 1.6777203e+07 = 0X1.FFFFE6P+23
0x00FFFFF4: 0x4B7FFFF4 = 1.6777204e+07 = 0X1.FFFFE8P+23
0x00FFFFF5: 0x4B7FFFF5 = 1.6777205e+07 = 0X1.FFFFEAP+23
0x00FFFFF6: 0x4B7FFFF6 = 1.6777206e+07 = 0X1.FFFFECP+23
0x00FFFFF7: 0x4B7FFFF7 = 1.6777207e+07 = 0X1.FFFFEEP+23
0x00FFFFF8: 0x4B7FFFF8 = 1.6777208e+07 = 0X1.FFFFF0P+23
0x00FFFFF9: 0x4B7FFFF9 = 1.6777209e+07 = 0X1.FFFFF2P+23
0x00FFFFFA: 0x4B7FFFFA = 1.6777210e+07 = 0X1.FFFFF4P+23
0x00FFFFFB: 0x4B7FFFFB = 1.6777211e+07 = 0X1.FFFFF6P+23
0x00FFFFFC: 0x4B7FFFFC = 1.6777212e+07 = 0X1.FFFFF8P+23
0x00FFFFFD: 0x4B7FFFFD = 1.6777213e+07 = 0X1.FFFFFAP+23
0x00FFFFFE: 0x4B7FFFFE = 1.6777214e+07 = 0X1.FFFFFCP+23
0x00FFFFFF: 0x4B7FFFFF = 1.6777215e+07 = 0X1.FFFFFEP+23
0x01000000: 0x4B800000 = 1.6777216e+07 = 0X1.000000P+24
0x01000001: 0x4B800000 = 1.6777216e+07 = 0X1.000000P+24
0x01000002: 0x4B800001 = 1.6777218e+07 = 0X1.000002P+24
0x01000003: 0x4B800002 = 1.6777220e+07 = 0X1.000004P+24
0x01000004: 0x4B800002 = 1.6777220e+07 = 0X1.000004P+24
0x01000005: 0x4B800002 = 1.6777220e+07 = 0X1.000004P+24
0x01000006: 0x4B800003 = 1.6777222e+07 = 0X1.000006P+24
0x01000007: 0x4B800004 = 1.6777224e+07 = 0X1.000008P+24
0x01000008: 0x4B800004 = 1.6777224e+07 = 0X1.000008P+24
0x01000009: 0x4B800004 = 1.6777224e+07 = 0X1.000008P+24
0x0100000A: 0x4B800005 = 1.6777226e+07 = 0X1.00000AP+24
0x0100000B: 0x4B800006 = 1.6777228e+07 = 0X1.00000CP+24
0x0100000C: 0x4B800006 = 1.6777228e+07 = 0X1.00000CP+24
0x0100000D: 0x4B800006 = 1.6777228e+07 = 0X1.00000CP+24
0x0100000E: 0x4B800007 = 1.6777230e+07 = 0X1.00000EP+24
0x0100000F: 0x4B800008 = 1.6777232e+07 = 0X1.000010P+24
0x01000010: 0x4B800008 = 1.6777232e+07 = 0X1.000010P+24
0x01000011: 0x4B800008 = 1.6777232e+07 = 0X1.000010P+24
0x01000012: 0x4B800009 = 1.6777234e+07 = 0X1.000012P+24
0x01000013: 0x4B80000A = 1.6777236e+07 = 0X1.000014P+24
0x01000014: 0x4B80000A = 1.6777236e+07 = 0X1.000014P+24
0x01000015: 0x4B80000A = 1.6777236e+07 = 0X1.000014P+24
0x01000016: 0x4B80000B = 1.6777238e+07 = 0X1.000016P+24
0x01000017: 0x4B80000C = 1.6777240e+07 = 0X1.000018P+24
0x01000018: 0x4B80000C = 1.6777240e+07 = 0X1.000018P+24
0x01000019: 0x4B80000C = 1.6777240e+07 = 0X1.000018P+24
0x0100001A: 0x4B80000D = 1.6777242e+07 = 0X1.00001AP+24
0x0100001B: 0x4B80000E = 1.6777244e+07 = 0X1.00001CP+24
0x0100001C: 0x4B80000E = 1.6777244e+07 = 0X1.00001CP+24
0x0100001D: 0x4B80000E = 1.6777244e+07 = 0X1.00001CP+24
0x0100001E: 0x4B80000F = 1.6777246e+07 = 0X1.00001EP+24
0x0100001F: 0x4B800010 = 1.6777248e+07 = 0X1.000020P+24
0x01000020: 0x4B800010 = 1.6777248e+07 = 0X1.000020P+24
0x01000021: 0x4B800010 = 1.6777248e+07 = 0X1.000020P+24
0x01000022: 0x4B800011 = 1.6777250e+07 = 0X1.000022P+24
0x01000023: 0x4B800012 = 1.6777252e+07 = 0X1.000024P+24
0x01000024: 0x4B800012 = 1.6777252e+07 = 0X1.000024P+24
0x01000025: 0x4B800012 = 1.6777252e+07 = 0X1.000024P+24
0x01000026: 0x4B800013 = 1.6777254e+07 = 0X1.000026P+24
0x01000027: 0x4B800014 = 1.6777256e+07 = 0X1.000028P+24
0x01000028: 0x4B800014 = 1.6777256e+07 = 0X1.000028P+24
0x01000029: 0x4B800014 = 1.6777256e+07 = 0X1.000028P+24
0x0100002A: 0x4B800015 = 1.6777258e+07 = 0X1.00002AP+24
0x0100002B: 0x4B800016 = 1.6777260e+07 = 0X1.00002CP+24
0x0100002C: 0x4B800016 = 1.6777260e+07 = 0X1.00002CP+24
0x0100002D: 0x4B800016 = 1.6777260e+07 = 0X1.00002CP+24
0x0100002E: 0x4B800017 = 1.6777262e+07 = 0X1.00002EP+24
0x0100002F: 0x4B800018 = 1.6777264e+07 = 0X1.000030P+24
输出的第一部分表明仍然可以精确存储某些整数值;具体而言,2的幂可以准确存储。实际上,更精确地(但不那么简明),绝对值的二进制表示不超过24位有效数字(任何尾随数字为零)的任何整数都可以精确表示。这些值不一定能完全打印出来,但这与存储它们完全不同。
输出的第二个(较大的)部分表明最多2 24 -1,可以精确表示整数值。 2 24 本身的值也是完全可表示的,但2 24 +1不是,因此它看起来与2 24 相同。相比之下,2 24 +2可以仅用24个二进制数字表示,然后是1,因此可以精确表示。对于大于2的增量,重复 ad nauseam 。看起来'round even'模式有效;这就是为什么结果显示1值然后3值。
(我顺便提一下,没有办法规定传递给double
的{{1}} - 由默认参数促销的规则从printf()
转换而来< / em>(ISO / IEC 9899:2011§6.5.2.2函数调用,¶6)打印为float
- 逻辑上将使用float()
修饰符,但未定义。)
答案 1 :(得分:1)
C / C ++浮点数往往与IEEE 754浮点标准兼容(例如在gcc中)。零来自rounding rules。
向右移动一个数字会使右侧的某些位消失。我们称他们为guard bits
。现在让我们调用HO
最高位和LO
我们号码的最低位。现在假设guard bits
仍然是我们号码的一部分。例如,如果我们有3 guard bits
,则意味着我们LO
位的值为8(如果已设置)。现在如果:
guard bits
&gt;的值0.5 * LO
将数字四舍五入到可能较小的值,忽略符号
&#39;保护位&#39; == 0.5 * LO
LO
== 0 guard bits
&lt; LO
的值0.5 * weights: 128 64 32 16 8 4 2 1
binary num: 0 0 0 0 1 1 1 1
为什么3个保护位意味着LO值为8?
假设我们有一个二进制8位数:
weights: x x x 128 64 32 16 8 | 4 2 1
binary num: 0 0 0 0 0 0 0 1 | 1 1 1
让它向右移3位:
LO
如你所见,有3个保护位,LO
位最终位于第4位,权重为8.这只是为了舍入的目的。权重必须被标准化&#39;之后,unsigned number; //our number
unsigned bitsToShift; //number of bits to shift
assert(bitsToShift < 8); //8 bits
unsigned guardMasks[8] = {0, 1, 3, 7, 0xf, 0x1f, 0x3f}
unsigned LOvalues[8] = {0, 1, 2, 4, 0x8, 0x10, 0x20, 0x40} //divided by 2 for faster comparison
unsigned guardBits = number & guardMasks[bitsToShift]; //value of the guard bits
number = number >> bitsToShift;
if(guardBits > LOvalues[bitsToShift]) {
...
} else if (guardBits == LOvalues[bitsToShift]) {
...
} else { //guardBits < LOvalues[bitsToShift]
...
}
位的权重再次变为1。
如果保护位&gt;如何检查位操作? 0.5 *值??
最快的方法是使用查找表。假设我们正在处理一个8位数字:
{{1}}
参考:由Randall Hyde编写的Great Code,第1卷