在Python中创建渐进式列表迭代

时间:2014-09-05 04:27:11

标签: python loops iteration

我有一个包含行(几何)的列表。这些线组成多个形状(正方形,矩形等)。然而,它们爆炸了,我试图想出一种方法,按照它们的形状将它们组合成单独的列表。例如,如果我的列表包含8行,我知道有两个矩形形状,我们想要创建两组,每组四行。 现在,我可以查询每一行的StartPoint()和EndPoint()。我正在考虑建立一个循环遍历列表的循环。选择列表中的第一行。获取其终点,然后检查它是否等于列表中其余行的任何起点。如果是,则将该行添加到具有第一行的列表中。然后取第二条线并做同样的事情,直到线的起点等于最后一条线的终点,并且第一条线的起点等于它的终点。 我该怎么办?

lines = [line1, line2, line3, line4, line5, line6, line7] #that means i have a square and a triangle
for i in lines:
    shape1.append(lines[0])
    sPoint = lines[0].StartPoint()
    ePoint = lines[0].EndPoint()
    if i.StartPoint() == ePoint:
        shape1.append(i)

我不确定如何自动创建“形状”列表以及如何打破循环以便我不会在圈子中运行。

任何帮助将不胜感激。 谢谢,

4 个答案:

答案 0 :(得分:1)

如果你花点时间抽象出问题,你会发现你真的只是在做图表。

图形由顶点和边缘组成。顶点是您的起点和终点。

我写了一段代码,一旦您了解了如何将数据转换为建议的格式,就可以帮助您解决问题。

<强>注释:

我建议您在阅读我的代码时阅读内置类型 set()

vertices = set(['A', 'C', 'B', 'E', 'D', 'G', 'F'])

#think of this as Line1.StartPoint()='A' Line1.EndPoint()='B' ... 
edges = {'A': 'B',
         'B': 'C',
         'C': 'D',
         'D': 'A',
         'E': 'F',
         'F': 'G',
         'G': 'E'}

shapes = set()

#Check if we tested all edges
while len(vertices) is not 0:
    next = vertices.pop()
    shape = set()
    while next not in shape:
        shape.add(next)
        next = edges[next]
    shapes.add(frozenset(shape))

print shapes

结果:

  

&gt;&gt; set([frozenset(['A','C','B','D']),frozenset(['E','G','F'])])< / p>

编辑:主要的加速是可能的,但为了简单起见,遗漏了。

答案 1 :(得分:0)

不是最好的算法,但我很困,这应该可以让你开始:

lines = [line1, line2, line3, line4, line5, line6, line7]
shapes = []

while lines:
    shape = [lines[0]]
    i=1
    while i < len(lines):
        line1 = lines[i]
        for line2 in lines[i+1:]:
            if line2.start == line1.end or line2.end == line1.start or \
               line2.start == line1.start or line2.end == line1.end:

                shape.append(line2)
                lines.pop(i)
                i -= 1
                if line2.end == shape[0].start or line2.start == shape[0].end or \
                   line2.end == shape[0].end or line2.start == shape[0].start:

                    shapes.append(shape)
                    shape = []
        i += 1

要改进这一点,请尝试按起点和终点对行进行排序,并对连接线进行二进制搜索

答案 2 :(得分:0)

预赛

首先,让我们定义一个line类,其中包含2个点的坐标:

import itertools
import random

class line(object) :
    """
    A line has 2 ends.
    """
    def __init__(self, tup0, tup1 ) :
        self.tup0 = tup0
        self.tup1 = tup1

    def __repr__( self ) :
        return "line[{0}, {1}]".format( self.tup0, self.tup1 )

    def StartPoint(self) :
        return self.tup0

    def EndPoint(self):
        return self.tup1

    def reverseLine(self) :
        return line( self.tup1, self.tup0 )

解决方案

我简单地枚举所有可能的形状(有效或无效),直到找到2个闭合形状:

  • 我列举了行列表
  • 的所有可能的双向分区
  • 给定分区的每个簇是可能的形状。为了实际验证,我列举了集群中行的顺序的所有可能的排列(以及每行的结束点的所有可能的排序)
  • 一旦我找到一个验证我们标准的分区(即每个群集是一个封闭的形状),我打印解决方案并停止

以下是帮手:

def is_closed( lines ) :
    """
    Return True if lines represents a closed shape (i.e., order matters)
    """
    are0ToNConnected = all( l.tup1 == lines[i+1].tup0 for i,l in enumerate( lines[:-1] ) ) 
    areFirstAndLastConnected = ( lines[-1].tup1 == lines[0].tup0 )
    return are0ToNConnected and areFirstAndLastConnected

def is_any_closed( lines ) :
    """
    Return True if at least one re-ordering of lines represents a closed shape (i.e., order doesnt matter)
    """
    return any( is_closed(newLines) 
               for permutedLines in itertools.permutations( lines ) 
               for newLines in itertools.product( * [ ( l, l.reverseLine() ) for l in permutedLines ] ) )

def k_way_partition( A, k ) :
    """
    Generator for all k-way partitions of A
    """
    if k == 1 :
        yield [ A ]
    elif len(A) == k :
        yield [ [ a ] for a in A ]
    else :
        for partition in k_way_partition( A[1:], k ) : # add new element to one of the current clusters
            for i, cluster in enumerate( partition ) :
                yield partition[:i] + [ cluster + [ A[0] ] ] + partition[i+1:]
        for partition in k_way_partition( A[1:], k-1 ) : # add new element to a new cluster
            yield [ [ A[0] ] ] + partition

这是主要功能:

def find_shapes( lines, k ) :
    """
    Looks for a partition of lines into k shapes, and print the solution if there is one.
    """
    for partition in k_way_partition( lines, k ) :
        if all( is_any_closed(cluster) for cluster in partition ) : # we found a solution
            for j, cj in enumerate( partition ) :
                print "shape {}: {}".format(j, cj )
            break

实施例

让我们生成随机数据并尝试解决方案:

# square
lines = [ line( (0,0), (0,1) ) ]
lines.append( line( (0,1), (1,1) ) )
lines.append( line( (1,1), (1,0) ) )
lines.append( line( (1,0), (0,0) ) )
# triangle
lines.append( line( (2,2), (2,3) ) )
lines.append( line( (2,3), (3,2) ) )
lines.append( line( (3,2), (2,2) ) )
lines

random.shuffle( lines )  # randomize the order of lines
for i, l in enumerate( lines ) :
    if random.random() < 0.5 :
        lines[i] = l.reverseLine()  # randomize order of coordinates
lines

缺货[8]:

[line[(0, 1), (1, 1)],
 line[(1, 1), (1, 0)],
 line[(2, 2), (2, 3)],
 line[(0, 0), (1, 0)],
 line[(3, 2), (2, 2)],
 line[(3, 2), (2, 3)],
 line[(0, 0), (0, 1)]]

现在让我们对随机数据运行我们的解决方案:

find_shapes( lines, 2 )
shape 0: [line[(3, 2), (2, 3)], line[(3, 2), (2, 2)], line[(2, 2), (2, 3)]]
shape 1: [line[(0, 0), (0, 1)], line[(0, 0), (1, 0)], line[(1, 1), (1, 0)], line[(0, 1), (1, 1)]]

有效!

答案 3 :(得分:0)

与@ ChristophHegemann的想法一样,想象一下数字实际上只是点的表示,所以在我的情况下,Line(1,4)或Edge(1,4)只是第1点和第4点之间的一条线。 / p>

from pprint import pprint

class Edge(object):
    def __init__(self,a,b):
        self.a        = a
        self.b        = b
        self.previous = None
        self.next     = None

    def __repr__(self):
        return "<Edge(%s,%s)>" % (self.a,self.b)

def find_shapes(lines):
    # builds the graph
    lines  = link_lines(lines)
    # explores the graph
    shapes = extract_shapes(lines)
    return shapes    

def link_lines(lines):
    # keep a safe copy of the list of lines. The original list will be tampered with.
    lines_copy = list(lines)

    for L in lines_copy:
        lines.remove(L)
        for line in lines:
            # if current line's end is other line's start
            if L.b == line.a:
                L.next        = line
                line.previous = L

            # if current line's start is other line's end
            elif L.a == line.b:
                L.previous = line
                line.next  = L

            # if we found both the previous and the next edge then we're done for this edge.
            # (edge has at most 1 previous and 1 next edge in a given shape).
            # this of course supposes that any single edge is present in at most one shape.

            if L.previous and L.next :
                break

        #put L back in
        lines.append(L)

    # return newly linked lines (graph)
    return lines

def extract_shapes(lines):
    lines_copy = list(lines)
    shapes     = []
    while lines_copy : 
        L         = lines_copy.pop()
        shape     = [L]
        next_edge = L.next
        # unlike @ChristophHegemann I work with edges, but the algorithm seems 
        # to be the same whether you work with edges or vertices
        while next_edge != L:
            shape.append(next_edge)
            lines_copy.remove(next_edge)            
            next_edge = next_edge.next

        shapes.append(shape)
    return shapes

# list of lines
# let's pretend shapes are : L1,L10,L2,L4 and L5,L3,L7,L11 and L6,L9,L8,L12

L1  = Edge(1,2)
L10 = Edge(2,3)
L2  = Edge(3,4)
L4  = Edge(4,1)

L5  = Edge(5,6)
L3  = Edge(6,7)
L7  = Edge(7,8)
L11 = Edge(8,5)

L6  = Edge(9,10)
L9  = Edge(10,11)
L8  = Edge(11,12)
L12 = Edge(12,9)

# random order of lines 
lines = [L1,L2,L3,L4,L5,L6,L7,L8,L9,L10,L11,L12]

pprint(find_shapes(lines))

# chaouche@karabeela ~/CODE/TEST/PYTHON/SO $ python lines.py
# [[<Edge(12,9)>, <Edge(9,10)>, <Edge(10,11)>, <Edge(11,12)>],
#  [<Edge(8,5)>, <Edge(5,6)>, <Edge(6,7)>, <Edge(7,8)>],
#  [<Edge(2,3)>, <Edge(3,4)>, <Edge(4,1)>, <Edge(1,2)>]]
# chaouche@karabeela ~/CODE/TEST/PYTHON/SO $