在我的应用程序中,我正在尝试实现动画系统。在此系统中,动画表示为循环帧列表:
data CyclicList a = CL a [a]
我们可以(低效率)推进动画,如下所示:
advance :: CyclicList a -> CyclicList a
advance (CL x []) = CL x []
advance (CL x (z:zs)) = CL z (zs ++ [x])
现在,我很确定这个数据类型是comonad:
instance Functor CyclicList where
fmap f (CL x xs) = CL (f x) (map f xs)
cyclicFromList :: [a] -> CyclicList a
cyclicFromList [] = error "Cyclic list must have one element!"
cyclicFromList (x:xs) = CL x xs
cyclicLength :: CyclicList a -> Int
cyclicLength (CL _ xs) = length xs + 1
listCycles :: CyclicList a -> [CyclicList a]
listCycles cl = let
helper 0 _ = []
helper n cl' = cl' : (helper (n-1) $ advance cl')
in helper (cyclicLength cl) cl
instance Comonad CyclicList where
extract (CL x _) = x
duplicate = cyclicFromList . listCycles
我的问题是:使用comonad实例可以获得什么样的好处(如果有的话)?
答案 0 :(得分:2)
提供类型类或实现接口的优点是,使用该类型类或接口编写的代码可以使用您的代码而无需任何修改。
可以用Comonad
来编写哪些程序? Comonad
提供了一种方法,可以使用extract
检查当前位置的值(不观察其邻居),并使用duplicate
或{{1来观察每个位置的邻域}}。没有任何附加功能,这不是非常有用。但是,如果我们还需要其他函数以及extend
实例,我们可以编写依赖于本地数据和来自其他地方的数据的程序。例如,如果我们需要允许我们更改位置的函数,例如Comonad
,我们可以编写仅依赖于数据本地结构的程序,而不是数据结构本身。
举一个具体的例子,考虑一个用advance
和以下Comonad
类编写的元胞自动机程序:
Bidirectional
该程序可以将此信息与class Bidirectional c where
forward :: c a -> Maybe (c a)
backward :: c a -> Maybe (c a)
一起用于存储在单元格中的Comonad
数据,并探索当前单元格的单元格extract
和forward
。它可以使用backward
来捕获每个单元格的邻域,并使用duplicate
来检查该邻域。 fmap
的这种组合是fmap f . duplicate
。
这是一个这样的程序。 extract f
只对这个例子感兴趣;它通过左右值实现邻域的元胞自动机规则。 rule'
在给定班级的情况下从邻域中提取数据,并在每个邻域上运行规则。 rule
拉出更大的社区,以便我们可以轻松地显示它们。 slice
运行模拟,为每一代显示这些较大的邻域。
simulate
此计划可能旨在与列表中的rule' :: Word8 -> Bool -> Bool -> Bool -> Bool
rule' x l m r = testBit x ((if l then 4 else 0) .|. (if m then 2 else 0) .|. (if r then 1 else 0))
rule :: (Comonad w, Bidirectional w) => Word8 -> w Bool -> w Bool
rule x = extend go
where
go w = rule' x (maybe False extract . backward $ w) (extract w) (maybe False extract . forward $ w)
slice :: (Comonad w, Bidirectional w) => Int -> Int -> a -> w a -> [a]
slice l r a w = sliceL l w (extract w : sliceR r w)
where
sliceR r w | r > 0 = case (forward w) of
Nothing -> take r (repeat a)
Just w' -> extract w' : sliceR (r-1) w'
sliceR _ _ = []
sliceL l w r | l > 0 = case (backward w) of
Nothing -> take l (repeat a) ++ r
Just w' -> sliceL (l-1) w' (extract w':r)
sliceL _ _ r = r
simulate :: (Comonad w, Bidirectional w) => (w Bool -> w Bool) -> Int -> Int -> Int -> w Bool -> IO ()
simulate f l r x w = mapM_ putStrLn . map (map (\x -> if x then '1' else '0') . slice l r False) . take x . iterate f $ w
Bidirectional
,Comonad
一起使用。
Zipper
但也适用于data Zipper a = Zipper {
heads :: [a],
here :: a,
tail :: [a]
} deriving Functor
instance Bidirectional Zipper where
forward (Zipper _ _ [] ) = Nothing
forward (Zipper l h (r:rs)) = Just $ Zipper (h:l) r rs
backward (Zipper [] _ _) = Nothing
backward (Zipper (l:ls) h r) = Just $ Zipper ls l (h:r)
instance Comonad Zipper where
extract = here
duplicate (Zipper l h r) = Zipper (goL (h:r) l) (Zipper l h r) (goR (h:l) r)
where
goL r [] = []
goL r (h:l) = Zipper l h r : goL (h:r) l
goR l [] = []
goR l (h:r) = Zipper l h r : goR (h:l) r
CyclicList
Bidirectional
。
Comonad
我们可以将data CyclicList a = CL a (Seq a)
deriving (Show, Eq, Functor)
instance Bidirectional CyclicList where
forward (CL x xs) = Just $ case viewl xs of
EmptyL -> CL x xs
x' :< xs' -> CL x' (xs' |> x)
backward (CL x xs) = Just $ case viewr xs of
EmptyR -> CL x xs
xs' :> x' -> CL x' (x <| xs')
instance Comonad CyclicList where
extract (CL x _) = x
duplicate (CL x xs) = CL (CL x xs) (go (singleton x) xs)
where
go old new = case viewl new of
EmptyL -> empty
x' :< xs' -> CL x' (xs' >< old) <| go (old |> x') xs'
重用于任一数据结构。 simulate
有一个更有意思的输出,因为它不会撞到墙上,而是会绕回来与自身交互。
CyclicList