我正在尝试创建一个函数来计算数据框中多个变量的不同百分位数。我正在使用dict和Pandas聚合函数,如下所示:
dfG = df.groupby('ClinicalEpisode')
dfA = dfG.agg( { 'Total LOS' :
{'Total LOS P5' : 'pd.quantile(.05)',
'Total LOS P10' : 'pd.quantile(.10)',
'Total LOS P15' : 'pd.quantile(.15)',
'Total LOS P20' : 'pd.quantile(.20)',
'Total LOS P25' : 'pd.quantile(.25)',
'Total LOS P30' : 'pd.quantile(.30)',
'Total LOS P33' : 'pd.quantile(.333333)',
'Total LOS P35' : 'pd.quantile(.35)',
'Total LOS P40' : 'pd.quantile(.40)',
'Total LOS P50' : 'pd.quantile(.50)',
'Total LOS P75' : 'pd.quantile(.75)',
'Total LOS P80' : 'pd.quantile(.80)',
'Total LOS P90' : 'pd.quantile(.90)'},
'Trigger SNF LOS' :
{'Trigger SNF LOS P5' : 'pd.quantile(.05)',
'Trigger SNF LOS P10' : 'pd.quantile(.10)',
'Trigger SNF LOS P15' : 'pd.quantile(.15)',
'Trigger SNF LOS P20' : 'pd.quantile(.20)',
'Trigger SNF LOS P25' : 'pd.quantile(.25)',
'Trigger SNF LOS P30' : 'pd.quantile(.30)',
'Trigger SNF LOS P33' : 'pd.quantile(.333333)',
'Trigger SNF LOS P35' : 'pd.quantile(.35)',
'Trigger SNF LOS P40' : 'pd.quantile(.40)',
'Trigger SNF LOS P50' : 'pd.quantile(.50)',
'Trigger SNF LOS P75' : 'pd.quantile(.75)',
'Trigger SNF LOS P80' : pd.quantile(.80),
'Trigger SNF LOS P90' : pd.quantile(.90)}
})
我尝试过许多不同的功能,但似乎没有任何功能可以用于dict。
FWIW,我能够使用以下代码一次计算一个变量的这些分位数:
dfA = df.groupby('ClinicalEpisode')['Total LOS'].quantile(
[.05, .1, .15, .2, .25, .3, .3333, .35, .4, .5, .6, .7, .75, .8, .9, .95])
不过,我真的希望能够使用dict方法。我只是卡住了。
答案 0 :(得分:5)
仅供参考,提供样本数据和预期输出是有帮助的。你也应该更明确而不是"我只是被卡住了#34;。
你有两个问题
quantile
方法。有DataFrame.quantile
方法,但我们无法使用它。这与你的第二个问题有关。percentile
,其中数组和百分位数q
介于0和100之间。就像我说的那样,groupby期待一个只是<的函数/ em>接受一个数组,所以让我们使用functools.partial
以下是如何做到这一点:
In [62]: percentiles = [5, 10, 15, 20, 25, 30, 33, 35, 40, 50, 75, 80, 90]
In [64]: from functools import partial
In [65]: aggs = {'P {}'.format(q): partial(np.percentile, q=q) for q in percentiles}
In [66]: aggs
Out[66]:
{'P 40': functools.partial(<function percentile at 0x10abde378>, q=40),
'P 90': functools.partial(<function percentile at 0x10abde378>, q=90),
...}
现在我们可以传入aggs
。
In [71]: df = pd.DataFrame(np.random.randn(20, 4))
In [72]: df['g'] = np.random.randint(0, 2, 20)
In [73]: df.groupby('g').agg({0: aggs, 1: aggs, 2:aggs})
Out[73]:
0 \
P 40 P 90 P 80 P 20 P 30 P 35 P 75
g
0 -1.451969 -0.134986 -0.466439 -1.726501 -1.475623 -1.463796 -0.632166
1 0.249210 1.363307 1.029008 -0.644655 -0.241753 0.180993 0.952654
1 \
P 5 P 15 P 25 P 33 P 50 P 10 P 40
g
0 -2.443653 -1.965552 -1.487451 -2.666927 -1.428315 -2.204603 -1.359988
1 -1.423351 -0.728314 -0.491645 -1.507900 0.381779 -1.126839 0.261025
....
如果您想要Total LOS ...
,可以修改字典中的键。我只有P [percentile]
,因为他们来自的列位于MultiIndex的上层。