在熊猫中按多个标准分组

时间:2014-08-25 16:33:40

标签: python pandas data-analysis

我有一个像这样的pandas数据结构:

>>> df
        Benny  Daniel   Doris   Eric   Jack    Zoe
Age        75      30      95     25     28     23
Salary   2000    9000  100000  10000  12000  20000 

我想找到几个不同组的平均年龄和薪水,其中每个组都是列的子集,它们可能重叠,例如这个词典:

{'Parrot lovers': ['Doris', 'Benny'], 'Tea Drinkers': ['Doris', 'Zoe'],\
 'Maintainance': ['Benny', 'Jack'], 'Coffee Drinkers': ['Benny', 'Eric'],\
 'Senior Management': ['Doris', 'Zoe', 'Jack']}

如何设计一个可以执行此操作的groupby函数?

2 个答案:

答案 0 :(得分:4)

以下是我设置问题的方法......

import StringIO
import pandas as pd

df = """index  Benny  Daniel   Doris   Eric   Jack    Zoe
Age        75      30      95     25     28     23
Salary   2000    9000  100000  10000  12000  20000"""
df = pd.read_csv(StringIO.StringIO(df),sep="\s+").set_index('index')
d = {'Parrot lovers': ['Doris', 'Benny'], 'Tea Drinkers': ['Doris', 'Zoe'],\
 'Maintainance': ['Benny', 'Jack'], 'Coffee Drinkers': ['Benny', 'Eric'],\
 'Senior Management': ['Doris', 'Zoe', 'Jack']}

对于解决方案,请使用.loc并遍历字典...

averages = {k:df.loc[:,v].mean(axis=1) for k,v in d.iteritems()}
print pd.DataFrame(averages).T #gives the nice printout...

index                    Age  Salary
Coffee Drinkers    50.000000    6000
Maintainance       51.500000    7000
Parrot lovers      85.000000   51000
Senior Management  48.666667   44000
Tea Drinkers       59.000000   60000

答案 1 :(得分:1)

可能有一些方法可以做到这一点,这是一条路。

转置数据,并为类别添加True / False列:

In [20]: group_map = {'Parrot lovers': ['Doris', 'Benny'], 
                      'Tea Drinkers': ['Doris', 'Zoe'],
                      'Maintainance': ['Benny', 'Jack'], 
                      'Coffee Drinkers': ['Benny', 'Eric'], 
                      'Senior Management': ['Doris', 'Zoe', 'Jack']}
In [22]: df = df.T
In [23]: for k in group_map:
    ...:     df[k] = df.index.isin(group_map[k])

现在,您可以按任意类别进行分组以获取方法:

In [24]: df.groupby('Parrot lovers')['Salary'].mean()
Out[24]: 
Parrot lovers
False            12750
True             51000
Name: Salary, dtype: int64

或者,迭代列以获得每个类别的均值。

In [24]: means = {}
    ...: for k in group_map:
    ...:     means[k] = df.groupby(k)['Salary'].mean()[True]
    ...: means
    ...: 
Out[24]: 
{'Coffee Drinkers': 6000,
 'Maintainance': 7000,
 'Parrot lovers': 51000,
 'Senior Management': 44000,
 'Tea Drinkers': 60000}