我有一个16位灰度图像,我希望将它转换为OpenCV中的8位灰度图像,以便python使用它具有各种功能(如findContours等)。是可以在python中完成它还是我必须切换到C ++?
答案 0 :(得分:12)
你可以使用numpy转换方法,因为OpenCV mat是一个numpy数组。
这有效:
img8 = (img16/256).astype('uint8')
答案 1 :(得分:2)
您可以使用NumPy在Python中通过查找表映射图像来完成此操作。
import numpy as np
def map_uint16_to_uint8(img, lower_bound=None, upper_bound=None):
'''
Map a 16-bit image trough a lookup table to convert it to 8-bit.
Parameters
----------
img: numpy.ndarray[np.uint16]
image that should be mapped
lower_bound: int, optional
lower bound of the range that should be mapped to ``[0, 255]``,
value must be in the range ``[0, 65535]`` and smaller than `upper_bound`
(defaults to ``numpy.min(img)``)
upper_bound: int, optional
upper bound of the range that should be mapped to ``[0, 255]``,
value must be in the range ``[0, 65535]`` and larger than `lower_bound`
(defaults to ``numpy.max(img)``)
Returns
-------
numpy.ndarray[uint8]
'''
if not(0 <= lower_bound < 2**16) and lower_bound is not None:
raise ValueError(
'"lower_bound" must be in the range [0, 65535]')
if not(0 <= upper_bound < 2**16) and upper_bound is not None:
raise ValueError(
'"upper_bound" must be in the range [0, 65535]')
if lower_bound is None:
lower_bound = np.min(img)
if upper_bound is None:
upper_bound = np.max(img)
if lower_bound >= upper_bound:
raise ValueError(
'"lower_bound" must be smaller than "upper_bound"')
lut = np.concatenate([
np.zeros(lower_bound, dtype=np.uint16),
np.linspace(0, 255, upper_bound - lower_bound).astype(np.uint16),
np.ones(2**16 - upper_bound, dtype=np.uint16) * 255
])
return lut[img].astype(np.uint8)
# Let's generate an example image (normally you would load the 16-bit image: cv2.imread(filename, cv2.IMREAD_UNCHANGED))
img = (np.random.random((100, 100)) * 2**16).astype(np.uint16)
# Convert it to 8-bit
map_uint16_to_uint8(img)
答案 2 :(得分:2)
使用scipy.misc.bytescale转换为8位确实很容易。 OpenCV矩阵是一个numpy数组,因此字节比例将完全满足您的要求。
from scipy.misc import bytescale
img8 = bytescale(img16)
答案 3 :(得分:1)
scipy中的代码(现已弃用):
def bytescaling(data, cmin=None, cmax=None, high=255, low=0):
"""
Converting the input image to uint8 dtype and scaling
the range to ``(low, high)`` (default 0-255). If the input image already has
dtype uint8, no scaling is done.
:param data: 16-bit image data array
:param cmin: bias scaling of small values (def: data.min())
:param cmax: bias scaling of large values (def: data.max())
:param high: scale max value to high. (def: 255)
:param low: scale min value to low. (def: 0)
:return: 8-bit image data array
"""
if data.dtype == np.uint8:
return data
if high > 255:
high = 255
if low < 0:
low = 0
if high < low:
raise ValueError("`high` should be greater than or equal to `low`.")
if cmin is None:
cmin = data.min()
if cmax is None:
cmax = data.max()
cscale = cmax - cmin
if cscale == 0:
cscale = 1
scale = float(high - low) / cscale
bytedata = (data - cmin) * scale + low
return (bytedata.clip(low, high) + 0.5).astype(np.uint8)
答案 4 :(得分:0)
是的,您可以使用Python。要获得预期的结果,请根据您希望从uint16映射到uint8的值来选择一种方法。
例如,
如果您执行img8 = (img16/256).astype('uint8')
,则将256以下的值映射为0
如果您进行的img8 = img16.astype('uint8')
值大于255,则映射为0
在上述和更正的LUT方法中,您必须定义映射。
答案 5 :(得分:0)
Opencv提供功能cv2.convertScaleAbs()
image_8bit = cv2.convertScaleAbs(image, alpha=0.03)
Alpha只是可选的比例因子。也适用于多通道图像。
OpenCV documentation:
缩放,计算绝对值并将结果转换为8位。
在输入数组的每个元素上,函数convertScaleAbs 按顺序执行三个操作:缩放,绝对 值,转换为无符号的8位类型:
有关Stackoverflow的其他信息:OpenCV: How to use the convertScaleAbs() function
答案 6 :(得分:-2)
使用python openCV从16位转换为8位:
import numpy as np
import cv2
imagePath = "--"
img_8bit = cv2.imread(imagePath).astype(np.uint8)