以下是怎么回事?
#create some data
library(data.table)
library(mice)
myData = data.table(invisible.covariate=rnorm(10),
visible.covariate=rnorm(10),
category=factor(sample(1:3,10, replace=TRUE)),
treatment=sample(0:1,10, replace=TRUE))
myData[,outcome:=invisible.covariate+visible.covariate+treatment*as.integer(category)]
myData[,invisible.covariate:=NULL]
myData[treatment == 0,untreated.outcome:=outcome]
myData[treatment == 1,treated.outcome:=outcome]
#impute missing values
myPredictors = matrix(0,ncol(myData),ncol(myData))
myPredictors[5,] = c(1,1,0,0,0,0)
myPredictors[6,] = c(1,1,0,0,0,0)
myImp = mice(myData,predictorMatrix=myPredictors)
#Now look at the "complete" data
completeData = data.table(complete(myImp,0))
print(nrow(completeData[is.na(untreated.outcome)]))
如果小鼠已成功替换所有NA值,则结果应为0。但事实并非如此。我做错了什么?
答案 0 :(得分:1)
complete
中的第二个参数旨在表示零以外的其他参数(返回原始的不完整数据),例如1和生成的插补数之间的标量。它还接受一些字符输入(有关详细信息,请参阅文档)。
试试这个:
completeData = data.table(complete(myImp, 1))
比较
> completeData = data.table(complete(myImp,0))
> print(nrow(completeData[is.na(untreated.outcome)]))
[1] 5
> completeData = data.table(complete(myImp,1))
> print(nrow(completeData[is.na(untreated.outcome)]))
[1] 0
干杯!