据我所知,研究提升asio并找出一个叫做“strand”的课程。 如果只有一个io_service与特定的链相关联并通过链发布句柄。
示例(来自here)
boost::shared_ptr< boost::asio::io_service > io_service(
new boost::asio::io_service
);
boost::shared_ptr< boost::asio::io_service::work > work(
new boost::asio::io_service::work( *io_service )
);
boost::asio::io_service::strand strand( *io_service );
boost::thread_group worker_threads;
for( int x = 0; x < 2; ++x )
{
worker_threads.create_thread( boost::bind( &WorkerThread, io_service ) );
}
boost::this_thread::sleep( boost::posix_time::milliseconds( 1000 ) );
strand.post( boost::bind( &PrintNum, 1 ) );
strand.post( boost::bind( &PrintNum, 2 ) );
strand.post( boost::bind( &PrintNum, 3 ) );
strand.post( boost::bind( &PrintNum, 4 ) );
strand.post( boost::bind( &PrintNum, 5 ) );
然后,strand会为我们序列化处理程序执行。但是这样做的好处是什么呢?为什么我们不想创建一个单独的线程(例如:for循环中的make x = 1)序列
答案 0 :(得分:29)
考虑一个系统,其中单个io_service
管理数百个网络连接的套接字。为了能够并行化工作负载,系统维护一个调用io_service::run
的工作线程池。
现在,这种系统中的大多数操作都可以并行运行。但有些必须被序列化。例如,您可能不希望同一个套接字上的多个写操作同时发生。然后,您将使用每个套接字一个链来同步写入:不同套接字上的写入仍然可以同时发生,而对相同套接字的写入将被序列化。工作线程不必关心同步或不同的套接字,只需抓住io_service::run
手中的任何内容。
有人可能会问:为什么我们不能只使用互斥来代替同步? strand的优点是,如果已经处理了strand,则工作线程将不会首先被调度。使用互斥锁,工作线程将获得回调,然后阻止锁定尝试,阻止线程执行任何有用的工作,直到互斥锁变为可用。
答案 1 :(得分:3)
我知道它太旧了,但是希望它可以帮助新用户通过示例来理解。阅读代码中的注释
#define BOOST_DATE_TIME_NO_LIB
#define BOOST_REGEX_NO_LIB
#include <boost/asio.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/thread.hpp>
#include <boost/thread/mutex.hpp>
#include <boost/bind.hpp>
#include <iostream>
boost::mutex global_stream_lock;
void WorkerThread(boost::shared_ptr<boost::asio::io_service> iosvc, int counter) {
global_stream_lock.lock();
std::cout << "Thread " << std::this_thread::get_id() << ", " << counter << " Start.\n";
global_stream_lock.unlock();
iosvc->run();
global_stream_lock.lock();
std::cout << "Thread " << counter << " End.\n";
global_stream_lock.unlock();
}
void async_send_handler(int number) {
std::cout << "Number: " << number << ", threadID: " << std::this_thread::get_id() << std::endl;
}
int main(void) {
boost::shared_ptr<boost::asio::io_service> io_svc(
new boost::asio::io_service
);
boost::shared_ptr<boost::asio::io_service::work> worker(
new boost::asio::io_service::work(*io_svc)
);
boost::asio::io_service::strand strand(*io_svc);
global_stream_lock.lock();
std::cout << "The program will exit once all work has finished.\n";
global_stream_lock.unlock();
boost::thread_group threads;
for( int i = 1; i <= 5; i++ )
threads.create_thread(boost::bind(&WorkerThread, io_svc, i));
boost::this_thread::sleep(boost::posix_time::milliseconds(500));
// Imagine you are invoking async_send on tcp or udp socket several times
// and you want the handlers of this async_send call to be invoked sequentially
// This code is almost equal to calling handlers of socket.async_send.
// The handlers are invoked concurently and the order might be arbitrary
io_svc->post(boost::bind(&async_send_handler, 1));
io_svc->post(boost::bind(&async_send_handler, 2));
io_svc->post(boost::bind(&async_send_handler, 3));
io_svc->post(boost::bind(&async_send_handler, 4));
io_svc->post(boost::bind(&async_send_handler, 5));
// This code will do what you exactly want;
// It will execute the handlers sequentially in that order
strand.post(boost::bind(&async_send_handler, 1));
strand.post(boost::bind(&async_send_handler, 2));
strand.post(boost::bind(&async_send_handler, 3));
strand.post(boost::bind(&async_send_handler, 4));
strand.post(boost::bind(&async_send_handler, 5));
worker.reset();
threads.join_all();
return 0;
}