为什么snprintf更改输出字符串?

时间:2014-08-15 14:02:22

标签: c gcc printf

我尝试使用snprintf将一些数字转换为字符串。 name1在逗号后应与name2具有相同的数字。

  #include <stdio.h>
  #define length 50

  int main()
  {
  char name1 [length]; 
  char name2 [length];
  double step= 0.00001;
  unsigned long long int iterMax  =100000000000; 
  int k;

  for (k = 0; k <= 20; k++)  
    { printf("numbers :  k = %2d ; k*step = %f ;", k, k*step); 
      snprintf(name1,length+1,"%f", iterMax+k*step); /* */
      snprintf(name2,length+1, " %f", k*step); /*  */
      printf("strings : k*step =  %s ; iterMax+k*step = %s \n",name2, name1);  
    }
  return 0;
}

用以下内容编译:

 gcc t.c  -Wall

输出是:

./a.out 
numbers :  k =  0 ; k*step = 0.000000 ;strings : k*step =   0.000000 ; iterMax+k*step = 100000000000.000000 
numbers :  k =  1 ; k*step = 0.000010 ;strings : k*step =   0.000010 ; iterMax+k*step = 100000000000.000015 
numbers :  k =  2 ; k*step = 0.000020 ;strings : k*step =   0.000020 ; iterMax+k*step = 100000000000.000015 
numbers :  k =  3 ; k*step = 0.000030 ;strings : k*step =   0.000030 ; iterMax+k*step = 100000000000.000031 
numbers :  k =  4 ; k*step = 0.000040 ;strings : k*step =   0.000040 ; iterMax+k*step = 100000000000.000046 

当iterMax较小时,结果是相同的(数字aftter逗号),例如100000000:

numbers :  k =  0 ; k*step = 0.000000 ;strings : k*step =   0.000000 ; iterMax+k*step = 100000000.000000 
numbers :  k =  1 ; k*step = 0.000010 ;strings : k*step =   0.000010 ; iterMax+k*step = 100000000.000010 
numbers :  k =  2 ; k*step = 0.000020 ;strings : k*step =   0.000020 ; iterMax+k*step = 100000000.000020 
numbers :  k =  3 ; k*step = 0.000030 ;strings : k*step =   0.000030 ; iterMax+k*step = 100000000.000030 
numbers :  k =  4 ; k*step = 0.000040 ;strings : k*step =   0.000040 ; iterMax+k*step = 100000000.000040 

ULLONG_MAX = 18446744073709551615比iterMax大。

我该如何解决?

TIA

3 个答案:

答案 0 :(得分:5)

这实际上是double精度的问题。还有很多其他问题可以解释更多有关IEEE-754浮点数的问题,但我在此总结了相关要点:

  1. double和家人有效地以科学记数法存储数字,精度有限。这意味着数字越大,它就越不准确。
  2. 大多数数字使用基数2.因此,小数0.1无法准确存储(相反,它类似于0.10000000149011612
  3. 因此,数字100000000000.000010是&#34;大&#34;,因此在小数位后变得不太准确。事实上,一旦你走向约4503599627370496,你甚至不能存储所有整数!

答案 1 :(得分:1)

投射到long double以获得更高的精确度:

snprintf(name1,length+1,"%Lf", (long double)iterMax+k*step); 

输出:

numbers :  k =  0 ; k*step = 0.000000 ;strings : k*step =   0.000000 ; iterMax+k*step = 100000000000.000000 
numbers :  k =  1 ; k*step = 0.000010 ;strings : k*step =   0.000010 ; iterMax+k*step = 100000000000.000010 
numbers :  k =  2 ; k*step = 0.000020 ;strings : k*step =   0.000020 ; iterMax+k*step = 100000000000.000020 
numbers :  k =  3 ; k*step = 0.000030 ;strings : k*step =   0.000030 ; iterMax+k*step = 100000000000.000030 
numbers :  k =  4 ; k*step = 0.000040 ;strings : k*step =   0.000040 ; iterMax+k*step = 100000000000.000040 
numbers :  k =  5 ; k*step = 0.000050 ;strings : k*step =   0.000050 ; iterMax+k*step = 100000000000.000050 
numbers :  k =  6 ; k*step = 0.000060 ;strings : k*step =   0.000060 ; iterMax+k*step = 100000000000.000060 
numbers :  k =  7 ; k*step = 0.000070 ;strings : k*step =   0.000070 ; iterMax+k*step = 100000000000.000070 
numbers :  k =  8 ; k*step = 0.000080 ;strings : k*step =   0.000080 ; iterMax+k*step = 100000000000.000080 
numbers :  k =  9 ; k*step = 0.000090 ;strings : k*step =   0.000090 ; iterMax+k*step = 100000000000.000090 
numbers :  k = 10 ; k*step = 0.000100 ;strings : k*step =   0.000100 ; iterMax+k*step = 100000000000.000100 
numbers :  k = 11 ; k*step = 0.000110 ;strings : k*step =   0.000110 ; iterMax+k*step = 100000000000.000110 
numbers :  k = 12 ; k*step = 0.000120 ;strings : k*step =   0.000120 ; iterMax+k*step = 100000000000.000120 
numbers :  k = 13 ; k*step = 0.000130 ;strings : k*step =   0.000130 ; iterMax+k*step = 100000000000.000130 
numbers :  k = 14 ; k*step = 0.000140 ;strings : k*step =   0.000140 ; iterMax+k*step = 100000000000.000140 
numbers :  k = 15 ; k*step = 0.000150 ;strings : k*step =   0.000150 ; iterMax+k*step = 100000000000.000150 
numbers :  k = 16 ; k*step = 0.000160 ;strings : k*step =   0.000160 ; iterMax+k*step = 100000000000.000160 
numbers :  k = 17 ; k*step = 0.000170 ;strings : k*step =   0.000170 ; iterMax+k*step = 100000000000.000170 
numbers :  k = 18 ; k*step = 0.000180 ;strings : k*step =   0.000180 ; iterMax+k*step = 100000000000.000180 
numbers :  k = 19 ; k*step = 0.000190 ;strings : k*step =   0.000190 ; iterMax+k*step = 100000000000.000190 
numbers :  k = 20 ; k*step = 0.000200 ;strings : k*step =   0.000200 ; iterMax+k*step = 100000000000.000200 

答案 2 :(得分:0)

当打印超过DBL_DIG个有效小数位数时,可能会出现double有限格式的效果。

示例:

#include <float.h>

printf("%d\n", DBL_DIG);
printf("%.*e\n", DBL_DIG - 1, 100000000000.0 + 0.00001);
printf("%.*e\n", DBL_DIG - 1 + 10, 100000000000.0 + 0.00001);

15
1.00000000000000e+11
1.000000000000000152587891e+11

1.00000000000000e+11有15位有效小数位数。 ('。'右边14')


无论用于double的基数(2,10,16等),只有这么多的十进制数字 是“往返”的。

示例:(假设DBL_DIG为10,C指定的最小

double x;
scanf("%lf", &x);
printf("%.*e\n", DBL_DIG - 1, x);
printf("%.*e\n", DBL_DIG - 1 + 5, x);

如果用户输入“12345678901234567890”,输出将为“1.234567890e19”和“1.234567890 ????? e19”,“?????”不是由C指定的。