我的Dockerfile类似于
FROM my/base
ADD . /srv
RUN pip install -r requirements.txt
RUN python setup.py install
ENTRYPOINT ["run_server"]
每次构建新图像时,都必须重新安装依赖项,这在我的区域可能会非常慢。
我想到的cache
已安装软件包的一种方法是使用更新的图像覆盖my/base
图像:
docker build -t new_image_1 .
docker tag new_image_1 my/base
所以下次我使用这个Dockerfile构建时,我的/ base已经安装了一些软件包。
但是这个解决方案有两个问题:
那么我可以用什么更好的解决方案来解决这个问题?
有关我机器上泊坞窗的一些信息:
☁ test docker version
Client version: 1.1.2
Client API version: 1.13
Go version (client): go1.2.1
Git commit (client): d84a070
Server version: 1.1.2
Server API version: 1.13
Go version (server): go1.2.1
Git commit (server): d84a070
☁ test docker info
Containers: 0
Images: 56
Storage Driver: aufs
Root Dir: /var/lib/docker/aufs
Dirs: 56
Execution Driver: native-0.2
Kernel Version: 3.13.0-29-generic
WARNING: No swap limit support
答案 0 :(得分:102)
尝试使用以下Dockerfile构建。
FROM my/base
WORKDIR /srv
ADD ./requirements.txt /srv/requirements.txt
RUN pip install -r requirements.txt
ADD . /srv
RUN python setup.py install
ENTRYPOINT ["run_server"]
如果.
(您的项目)发生了一些更改,则docker会使用缓存跳过pip install
行。
当您编辑requirements.txt文件时,Docker仅在构建时运行pip install
。
我写了简单的Hello, World!
程序。
$ tree
.
├── Dockerfile
├── requirements.txt
└── run.py
0 directories, 3 file
# Dockerfile
FROM dockerfile/python
WORKDIR /srv
ADD ./requirements.txt /srv/requirements.txt
RUN pip install -r requirements.txt
ADD . /srv
CMD python /srv/run.py
# requirements.txt
pytest==2.3.4
# run.py
print("Hello, World")
以下是输出。
Step 1 : WORKDIR /srv
---> Running in 22d725d22e10
---> 55768a00fd94
Removing intermediate container 22d725d22e10
Step 2 : ADD ./requirements.txt /srv/requirements.txt
---> 968a7c3a4483
Removing intermediate container 5f4e01f290fd
Step 3 : RUN pip install -r requirements.txt
---> Running in 08188205e92b
Downloading/unpacking pytest==2.3.4 (from -r requirements.txt (line 1))
Running setup.py (path:/tmp/pip_build_root/pytest/setup.py) egg_info for package pytest
....
Cleaning up...
---> bf5c154b87c9
Removing intermediate container 08188205e92b
Step 4 : ADD . /srv
---> 3002a3a67e72
Removing intermediate container 83defd1851d0
Step 5 : CMD python /srv/run.py
---> Running in 11e69b887341
---> 5c0e7e3726d6
Removing intermediate container 11e69b887341
Successfully built 5c0e7e3726d6
我只更新run.py并尝试重新构建。
# run.py
print("Hello, Python")
以下是输出。
Sending build context to Docker daemon 5.12 kB
Sending build context to Docker daemon
Step 0 : FROM dockerfile/python
---> f86d6993fc7b
Step 1 : WORKDIR /srv
---> Using cache
---> 55768a00fd94
Step 2 : ADD ./requirements.txt /srv/requirements.txt
---> Using cache
---> 968a7c3a4483
Step 3 : RUN pip install -r requirements.txt
---> Using cache
---> bf5c154b87c9
Step 4 : ADD . /srv
---> 9cc7508034d6
Removing intermediate container 0d7cf71eb05e
Step 5 : CMD python /srv/run.py
---> Running in f25c21135010
---> 4ffab7bc66c7
Removing intermediate container f25c21135010
Successfully built 4ffab7bc66c7
如上所示,docker使用构建缓存。我这次更新了requirements.txt。
# requirements.txt
pytest==2.3.4
ipython
以下是输出。
Sending build context to Docker daemon 5.12 kB
Sending build context to Docker daemon
Step 0 : FROM dockerfile/python
---> f86d6993fc7b
Step 1 : WORKDIR /srv
---> Using cache
---> 55768a00fd94
Step 2 : ADD ./requirements.txt /srv/requirements.txt
---> b6c19f0643b5
Removing intermediate container a4d9cb37dff0
Step 3 : RUN pip install -r requirements.txt
---> Running in 4b7a85a64c33
Downloading/unpacking pytest==2.3.4 (from -r requirements.txt (line 1))
Running setup.py (path:/tmp/pip_build_root/pytest/setup.py) egg_info for package pytest
Downloading/unpacking ipython (from -r requirements.txt (line 2))
Downloading/unpacking py>=1.4.12 (from pytest==2.3.4->-r requirements.txt (line 1))
Running setup.py (path:/tmp/pip_build_root/py/setup.py) egg_info for package py
Installing collected packages: pytest, ipython, py
Running setup.py install for pytest
Installing py.test script to /usr/local/bin
Installing py.test-2.7 script to /usr/local/bin
Running setup.py install for py
Successfully installed pytest ipython py
Cleaning up...
---> 23a1af3df8ed
Removing intermediate container 4b7a85a64c33
Step 4 : ADD . /srv
---> d8ae270eca35
Removing intermediate container 7f003ebc3179
Step 5 : CMD python /srv/run.py
---> Running in 510359cf9e12
---> e42fc9121a77
Removing intermediate container 510359cf9e12
Successfully built e42fc9121a77
docker不使用构建缓存。如果它不起作用,请检查您的泊坞窗版本。
Client version: 1.1.2
Client API version: 1.13
Go version (client): go1.2.1
Git commit (client): d84a070
Server version: 1.1.2
Server API version: 1.13
Go version (server): go1.2.1
Git commit (server): d84a070
答案 1 :(得分:19)
要最小化网络活动,可以将pip
指向主机上的缓存目录。
运行您的docker容器,将主机的pip缓存目录bind挂载到容器的pip缓存目录中。 docker run
命令应如下所示:
docker run -v $HOME/.cache/pip/:/root/.cache/pip image_1
然后在您的Dockerfile中将您的需求安装为ENTRYPOINT
语句(或CMD
语句)的一部分而不是RUN
命令。这很重要,因为(如注释中所指出的)在映像构建期间(执行RUN
语句时),mount不可用。 Docker文件应如下所示:
FROM my/base
ADD . /srv
ENTRYPOINT ["sh", "-c", "pip install -r requirements.txt && python setup.py install && run_server"]
如果主机系统的默认pip目录将用作缓存(例如Linux上的$HOME/.cache/pip/
或OSX上的$HOME/Library/Caches/pip/
),可能是最好的,就像我建议的那样在示例docker run
命令中。
答案 2 :(得分:13)
我知道这个问题已经有了一些流行的答案。但是,有一种更新的方式可以为程序包管理器缓存文件。我认为,当BuildKit变得更加标准时,这可能是一个很好的答案。
从Docker 18.09开始,对BuildKit进行了实验性支持。 BuildKit在RUN
步骤中增加了对Dockerfile中某些新功能的支持,包括experimental support for mounting external volumes。这样,我们就可以为$HOME/.cache/pip/
之类的内容创建缓存。
我们将使用以下requirements.txt
文件作为示例:
Click==7.0
Django==2.2.3
django-appconf==1.0.3
django-compressor==2.3
django-debug-toolbar==2.0
django-filter==2.2.0
django-reversion==3.0.4
django-rq==2.1.0
pytz==2019.1
rcssmin==1.0.6
redis==3.3.4
rjsmin==1.1.0
rq==1.1.0
six==1.12.0
sqlparse==0.3.0
Python Dockerfile
的典型示例如下所示:
FROM python:3.7
WORKDIR /usr/src/app
COPY requirements.txt /usr/src/app/
RUN pip install -r requirements.txt
COPY . /usr/src/app
通过使用DOCKER_BUILDKIT
环境变量启用BuildKit,我们可以在大约65秒内构建未缓存的pip
步骤:
$ export DOCKER_BUILDKIT=1
$ docker build -t test .
[+] Building 65.6s (10/10) FINISHED
=> [internal] load .dockerignore 0.0s
=> => transferring context: 2B 0.0s
=> [internal] load build definition from Dockerfile 0.0s
=> => transferring dockerfile: 120B 0.0s
=> [internal] load metadata for docker.io/library/python:3.7 0.5s
=> CACHED [1/4] FROM docker.io/library/python:3.7@sha256:6eaf19442c358afc24834a6b17a3728a45c129de7703d8583392a138ecbdb092 0.0s
=> [internal] load build context 0.6s
=> => transferring context: 899.99kB 0.6s
=> CACHED [internal] helper image for file operations 0.0s
=> [2/4] COPY requirements.txt /usr/src/app/ 0.5s
=> [3/4] RUN pip install -r requirements.txt 61.3s
=> [4/4] COPY . /usr/src/app 1.3s
=> exporting to image 1.2s
=> => exporting layers 1.2s
=> => writing image sha256:d66a2720e81530029bf1c2cb98fb3aee0cffc2f4ea2aa2a0760a30fb718d7f83 0.0s
=> => naming to docker.io/library/test 0.0s
现在,让我们添加实验性标头并修改RUN
步骤以缓存Python软件包:
# syntax=docker/dockerfile:experimental
FROM python:3.7
WORKDIR /usr/src/app
COPY requirements.txt /usr/src/app/
RUN --mount=type=cache,target=/root/.cache/pip pip install -r requirements.txt
COPY . /usr/src/app
继续并立即进行另一个构建。它应该花费相同的时间。但这一次是在新的缓存安装中缓存Python软件包:
$ docker build -t pythontest .
[+] Building 60.3s (14/14) FINISHED
=> [internal] load build definition from Dockerfile 0.0s
=> => transferring dockerfile: 120B 0.0s
=> [internal] load .dockerignore 0.0s
=> => transferring context: 2B 0.0s
=> resolve image config for docker.io/docker/dockerfile:experimental 0.5s
=> CACHED docker-image://docker.io/docker/dockerfile:experimental@sha256:9022e911101f01b2854c7a4b2c77f524b998891941da55208e71c0335e6e82c3 0.0s
=> [internal] load .dockerignore 0.0s
=> [internal] load build definition from Dockerfile 0.0s
=> => transferring dockerfile: 120B 0.0s
=> [internal] load metadata for docker.io/library/python:3.7 0.5s
=> CACHED [1/4] FROM docker.io/library/python:3.7@sha256:6eaf19442c358afc24834a6b17a3728a45c129de7703d8583392a138ecbdb092 0.0s
=> [internal] load build context 0.7s
=> => transferring context: 899.99kB 0.6s
=> CACHED [internal] helper image for file operations 0.0s
=> [2/4] COPY requirements.txt /usr/src/app/ 0.6s
=> [3/4] RUN --mount=type=cache,target=/root/.cache/pip pip install -r requirements.txt 53.3s
=> [4/4] COPY . /usr/src/app 2.6s
=> exporting to image 1.2s
=> => exporting layers 1.2s
=> => writing image sha256:0b035548712c1c9e1c80d4a86169c5c1f9e94437e124ea09e90aea82f45c2afc 0.0s
=> => naming to docker.io/library/test 0.0s
大约60秒。类似于我们的第一个版本。
对requirements.txt
进行一些更改(例如在两个软件包之间添加新行)以强制高速缓存无效并再次运行:
$ docker build -t pythontest .
[+] Building 15.9s (14/14) FINISHED
=> [internal] load build definition from Dockerfile 0.0s
=> => transferring dockerfile: 120B 0.0s
=> [internal] load .dockerignore 0.0s
=> => transferring context: 2B 0.0s
=> resolve image config for docker.io/docker/dockerfile:experimental 1.1s
=> CACHED docker-image://docker.io/docker/dockerfile:experimental@sha256:9022e911101f01b2854c7a4b2c77f524b998891941da55208e71c0335e6e82c3 0.0s
=> [internal] load build definition from Dockerfile 0.0s
=> => transferring dockerfile: 120B 0.0s
=> [internal] load .dockerignore 0.0s
=> [internal] load metadata for docker.io/library/python:3.7 0.5s
=> CACHED [1/4] FROM docker.io/library/python:3.7@sha256:6eaf19442c358afc24834a6b17a3728a45c129de7703d8583392a138ecbdb092 0.0s
=> CACHED [internal] helper image for file operations 0.0s
=> [internal] load build context 0.7s
=> => transferring context: 899.99kB 0.7s
=> [2/4] COPY requirements.txt /usr/src/app/ 0.6s
=> [3/4] RUN --mount=type=cache,target=/root/.cache/pip pip install -r requirements.txt 8.8s
=> [4/4] COPY . /usr/src/app 2.1s
=> exporting to image 1.1s
=> => exporting layers 1.1s
=> => writing image sha256:fc84cd45482a70e8de48bfd6489e5421532c2dd02aaa3e1e49a290a3dfb9df7c 0.0s
=> => naming to docker.io/library/test 0.0s
仅约16秒!
我们得到了这种加速,因为我们不再下载所有的Python软件包。它们由程序包管理器(在这种情况下为pip
)进行缓存,并存储在缓存卷装载中。卷安装已提供给运行步骤,以便pip
可以重用我们已经下载的软件包。 这发生在任何Docker层缓存之外。
在较大的requirements.txt
上,增益应该更好。
注意:
docker system prune -a
时会清除它。希望这些功能可以使其融入Docker进行构建,并且BuildKit将成为默认设置。如果/当发生这种情况时,我将尝试更新此答案。
答案 3 :(得分:0)
pipenv install
默认尝试重新锁定。当它发生时,不会使用 Docker 构建的缓存层,因为 Pipfile.lock 已更改。 See the docs
对此的解决方案是版本 Pipfile.lock 并使用
RUN pipenv sync
相反。
感谢 JFG Piñeiro。
答案 4 :(得分:-6)
我发现更好的方法是将Python site-packages目录添加为卷。
services:
web:
build: .
command: python manage.py runserver 0.0.0.0:8000
volumes:
- .:/code
- /usr/local/lib/python2.7/site-packages/
这样我只需要安装新的库而无需进行完全重建。
编辑:忽略这个答案, jkukul 上面的答案对我有用。我的意图是缓存 site-packages 文件夹。这看起来更像是:
volumes:
- .:/code
- ./cached-packages:/usr/local/lib/python2.7/site-packages/
缓存下载文件夹虽然很简洁。这也可以缓解轮子,因此它可以很好地完成任务。