所以我正在尝试编写一个将RGB图像转换为灰度的程序。 我从Udacity问题集中得到了这个想法。问题是,当我在Udacity Web环境中写出内核时,它说我的代码有效,但是,当我尝试在我的计算机上本地执行时,我没有错误,但是我的图像而不是出现灰度,来了完全是灰色的。它看起来像一个灰色框,是我加载的图像的尺寸。你能帮我找到我的代码中的错误吗?我将它与Udacity版本进行了比较,我似乎无法找到它。
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include <string>
#include <cuda.h>
#include <stdio.h>
#include <opencv\cv.h>
#include <opencv\highgui.h>
#include <iostream>
#define CUDA_ERROR_CHECK
#define CudaSafeCall( err ) __cudaSafeCall( err, __FILE__, __LINE__ )
#define CudaCheckError() __cudaCheckError( __FILE__, __LINE__ )
inline void __cudaSafeCall(cudaError err, const char *file, const int line)
{
#ifdef CUDA_ERROR_CHECK
if (cudaSuccess != err)
{
fprintf(stderr, "cudaSafeCall() failed at %s:%i : %s\n",
file, line, cudaGetErrorString(err));
exit(-1);
}
#endif
return;
}
inline void __cudaCheckError(const char *file, const int line)
{
#ifdef CUDA_ERROR_CHECK
cudaError err = cudaGetLastError();
if (cudaSuccess != err)
{
fprintf(stderr, "cudaCheckError() failed at %s:%i : %s\n",
file, line, cudaGetErrorString(err));
exit(-1);
}
err = cudaDeviceSynchronize();
if (cudaSuccess != err)
{
fprintf(stderr, "cudaCheckError() with sync failed at %s:%i : %s\n",
file, line, cudaGetErrorString(err));
exit(-1);
}
#endif
return;
}
__global__ void rgb_2_grey(uchar* const greyImage, const uchar4* const rgbImage, int rows, int columns)
{
int rgb_x = blockIdx.x * blockDim.x + threadIdx.x; //x coordinate of pixel
int rgb_y = blockIdx.y * blockDim.y + threadIdx.y; //y coordinate of pixel
if ((rgb_x >= columns) && (rgb_y >= rows)) {
return;
}
int rgb_ab = rgb_y*columns + rgb_x; //absolute pixel position
uchar4 rgb_Img = rgbImage[rgb_ab];
greyImage[rgb_ab] = uchar((float(rgb_Img.x))*0.299f + (float(rgb_Img.y))*0.587f + (float(rgb_Img.z))*0.114f);
}
using namespace cv;
using namespace std;
void Proc_Img(uchar4** h_RGBImage, uchar** h_greyImage, uchar4 **d_RGBImage, uchar** d_greyImage);
void RGB_2_Greyscale(uchar* const d_greyImage, uchar4* const d_RGBImage, size_t num_Rows, size_t num_Cols);
void Save_Img();
Mat img_RGB;
Mat img_Grey;
uchar4 *d_rgbImg;
uchar *d_greyImg;
int main()
{
uchar4* h_rgbImg;
//uchar4* d_rgbImge=0;
uchar* h_greyImg;
//uchar* d_greyImge=0;
Proc_Img(&h_rgbImg, &h_greyImg, &d_rgbImg, &d_greyImg);
RGB_2_Greyscale(d_greyImg, d_rgbImg, img_RGB.rows, img_RGB.cols);
Save_Img();
return 0;
}
void Proc_Img(uchar4** h_RGBImage, uchar** h_greyImage, uchar4 **d_RGBImage, uchar** d_greyImage){
cudaFree(0);
CudaCheckError();
//loads image into a matrix object along with the colors in BGR format (must convert to rgb).
Mat img = imread("C:\\Users\\Austin\\Pictures\\wallpapers\\IMG_3581.JPG", CV_LOAD_IMAGE_COLOR);
if (img.empty()){
cerr << "couldnt open file dumbas..." << "C:\\Users\\Austin\\Pictures\\wallpapers\\IMG_3581.JPG" << endl;
exit(1);
}
//converts color type from BGR to RGB
cvtColor(img, img_RGB, CV_BGR2RGBA);
//allocate memory for new greyscale image.
//img.rows returns the range of pixels in y, img.cols returns range of pixels in x
//CV_8UC1 means 8 bit unsigned(non-negative) single channel of color, aka greyscale.
//all three of the parameters allow the create function in the Mat class to determine how much memory to allocate
img_Grey.create(img.rows, img.cols, CV_8UC1);
//creates rgb and greyscale image arrays
*h_RGBImage = (uchar4*)img_RGB.ptr<uchar>(0); //.ptr is a method in the mat class that returns a pointer to the first element of the matrix.
*h_greyImage = (uchar*)img_Grey.ptr<uchar>(0); //this is just like a regular array/pointer mem address to first element of the array. This is templated
//in this case the compiler runs the function for returning pointer of type unsigned char. for rgb image it is
//cast to uchar4 struct to hold r,g, and b values.
const size_t num_pix = (img_RGB.rows) * (img_RGB.cols); //amount of pixels
//allocate memory on gpu
cudaMalloc(d_RGBImage, sizeof(uchar4) * num_pix); //bites of 1 uchar4 times # of pixels gives number of bites necessary for array
CudaCheckError();
cudaMalloc(d_greyImage, sizeof(uchar) * num_pix);//bites of uchar times # pixels gives number of bites necessary for array
CudaCheckError();
cudaMemset(*d_greyImage, 0, sizeof(uchar) * num_pix);
CudaCheckError();
//copy array into allocated space
cudaMemcpy(*d_RGBImage, *h_RGBImage, sizeof(uchar4)*num_pix, cudaMemcpyHostToDevice);
CudaCheckError();
d_rgbImg = *d_RGBImage;
d_greyImg = *d_greyImage;
}
void RGB_2_Greyscale(uchar* const d_greyImage, uchar4* const d_RGBImage, size_t num_Rows, size_t num_Cols){
const int BS = 16;
const dim3 blockSize(BS, BS);
const dim3 gridSize((num_Cols / BS) + 1, (num_Rows / BS) + 1);
rgb_2_grey <<<gridSize, blockSize>>>(d_greyImage, d_RGBImage, num_Rows, num_Cols);
cudaDeviceSynchronize(); CudaCheckError();
}
void Save_Img(){
const size_t num_pix = (img_RGB.rows) * (img_RGB.cols);
cudaMemcpy(img_Grey.ptr<uchar>(0), d_greyImg, sizeof(uchar)*num_pix, cudaMemcpyDeviceToHost);
CudaCheckError();
imwrite("C:\\Users\\Austin\\Pictures\\wallpapers\\IMG_3581GR.JPG", img_Grey);
cudaFree(d_rgbImg);
cudaFree(d_greyImg);
}
编辑:我意识到我的main中的本地var与全局var的名称相同,我在这里编辑了代码,现在我从visual studio得到错误了
变量
d_rgbIme
正在使用而未初始化
当我已经在上面初始化它时。如果我将它们设置为零,我会收到一个CUDA错误
遇到非法内存访问
我尝试运行cuda-memcheck,但后来我收到错误,我无法运行该文件......
答案 0 :(得分:5)
我发现错误归功于Robert Crovella的评论之一,他对此非常有帮助!在我的内核中,if语句应该是if ((rgb_x >= columns) || (rgb_y >= rows)) {
答案 1 :(得分:0)
我正在研究JCUDA中的同样问题。看看你是否可以使用这个解决方案的任何部分:
//Read Height and Width of image in Height & Width variables
int Width = image.getWidth();
int Height = image.getHeight();
int N = Height * Width;
int[] grayScale = new int[N];
//Allocate separate arrays to store Alpha, Red, Green and
//Blue values for every pixel
int[] redHost = new int[N];
int[] greenHost = new int[N];
int[] blueHost = new int[N];
int[] alphaHost = new int[N];
for(int i=0; i<Height; i++)
{
for(int j=0; j<Width; j++)
{
int pixel = image.getRGB(j, i);
//Read the ARGB data
alphaHost[i*Width+j] = (pixel >> 24) & 0xff;
redHost[i*Width+j] = (pixel >> 16) & 0xff;
greenHost[i*Width+j] = (pixel >> 8) & 0xff;
blueHost[i*Width+j] = (pixel) & 0xff;
}
}
/ *以下是CUDA内核参数* /
Pointer kernelParameters = Pointer.to(
Pointer.to(new int[]{N}), //Total size of each array W * H
Pointer.to(redDev), // Pointer to redArray on device
Pointer.to(greenDev), // Pointer to greenArray on device
Pointer.to(blueDev), // Pointer to blueArray on device
Pointer.to(Output)); //Pointer to output array
/ *以下是我的RGBToGrayScale.cu..i.e。 CUDA Kernel * /
__global__ void RGBtoGrayScale(int N, int *red, int *green, int *blue, int *Output)
{
int id = blockIdx.x * blockDim.x + threadIdx.x;
if(id<N)
{
Output[id] = (red[id]*0.2989) + (green[id]*0.587) + (blue[id]*0.114);
}
}
/ *将输出数据恢复到主机内存* /
cuMemcpyDtoH(Pointer.to(grayScale), Output, N * Sizeof.INT);
/ *使用新的RBG值* /
写入图像BufferedImage im = new BufferedImage(Width,Height,BufferedImage.TYPE_BYTE_GRAY);
WritableRaster raster = im.getRaster();
for(int i=0;i<Height;i++)
{
for(int j=0;j<Width;j++)
{
raster.setSample(j, i, 0, grayScale[i*Width+j]);
}
}
try
{
ImageIO.write(im,"JPEG",new File("glpattern.jpeg"));
} catch (IOException e)
{
e.printStackTrace();
}