在Python中将32位整数转换为四个8位整数的数组

时间:2014-08-14 01:11:19

标签: python numpy vectorization

如何在Python中有效地将32位整数转换为四个8位整数的数组?

目前我有以下代码,这是超慢的:

def convert(int32_val):
    bin = np.binary_repr(int32_val, width = 32) 
    int8_arr = [int(bin[0:8],2), int(bin[8:16],2), 
                int(bin[16:24],2), int(bin[24:32],2)]
    return int8_arr  

E.g:

print convert(1)
>>> [0, 0, 0, 1]   

print convert(-1)
>>> [255, 255, 255, 255]

print convert(-1306918380)  
>>> [178, 26, 2, 20]

我需要在无符号32位整数上实现相同的行为。

此外。是否可以将其矢量化为32位整数的大型numpy数组?

4 个答案:

答案 0 :(得分:5)

使用dtype,如下所述: http://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.html

Subdivide int16 into 2 int8‘s, called x and y. 0 and 1 are the offsets in bytes:

np.dtype((np.int16, {'x':(np.int8,0), 'y':(np.int8,1)}))
dtype(('<i2', [('x', '|i1'), ('y', '|i1')]))

或适应您的情况:

In [30]: x=np.arange(12,dtype=np.int32)*1000
In [39]: dt=np.dtype((np.int32, {'f0':(np.uint8,0),'f1':(np.uint8,1),'f2':(np.uint8,2), 'f3':(np.uint8,3)}))

In [40]: x1=x.view(dtype=dt)

In [41]: x1['f0']
Out[41]: array([  0, 232, 208, 184, 160, 136, 112,  88,  64,  40,  16, 248], dtype=uint8)

In [42]: x1['f1']
Out[42]: array([ 0,  3,  7, 11, 15, 19, 23, 27, 31, 35, 39, 42], dtype=uint8)

比较

In [38]: x%256
Out[38]: array([  0, 232, 208, 184, 160, 136, 112,  88,  64,  40,  16, 248])

有关http://docs.scipy.org/doc/numpy/user/basics.rec.html

的更多文档
  

2)元组参数:应用于记录结构的唯一相关元组案例是将结构映射到现有数据类型。这是通过在元组中配对来完成的,现有数据类型具有匹配的dtype定义(使用此处描述的任何变体)。作为示例(使用列表的定义,请参阅3)以获取更多详细信息):

     

x = np.zeros(3,dtype =(&#39; i4&#39;,[(&#39; r&#39;,&#39; u1&#39;),&#39; g& #39;,&#39; u1&#39;),(&#39; b&#39;,&#39; u1&#39;),(&#39; a&#39;,&#39; u1&# 39)]))

     

数组([0,0,0])

     

x [&#39; r&#39;]#array([0,0,0],dtype = uint8)

     

在这种情况下,生成的数组看起来和行为类似于一个简单的int32数组,但也有只使用int32的一个字节的字段的定义(有点像Fortran等效)。

获取4个字节的2d数组的一种方法是:

In [46]: np.array([x1['f0'],x1['f1'],x1['f2'],x1['f3']])
Out[46]: 
array([[  0, 232, 208, 184, 160, 136, 112,  88,  64,  40,  16, 248],
       [  0,   3,   7,  11,  15,  19,  23,  27,  31,  35,  39,  42],
       [  0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0],
       [  0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0]], dtype=uint8)

同样的想法,但更紧凑:

In [50]: dt1=np.dtype(('i4', [('bytes','u1',4)]))

In [53]: x2=x.view(dtype=dt1)

In [54]: x2.dtype
Out[54]: dtype([('bytes', 'u1', (4,))])

In [55]: x2['bytes']
Out[55]: 
array([[  0,   0,   0,   0],
       [232,   3,   0,   0],
       [208,   7,   0,   0],
       [184,  11,   0,   0],
       [160,  15,   0,   0],
       [136,  19,   0,   0],
       [112,  23,   0,   0],
       [ 88,  27,   0,   0],
       [ 64,  31,   0,   0],
       [ 40,  35,   0,   0],
       [ 16,  39,   0,   0],
       [248,  42,   0,   0]], dtype=uint8)

In [56]: x2
Out[56]: 
array([    0,  1000,  2000,  3000,  4000,  5000,  6000,  7000,  8000,
        9000, 10000, 11000])

答案 1 :(得分:3)

Python 3.2 及更高版本中,还有一个新的int方法to_bytes也可以使用:

>>> convert = lambda n : [int(i) for i in n.to_bytes(4, byteorder='big', signed=True)]
>>>
>>> convert(1)
[0, 0, 0, 1]
>>>
>>> convert(-1)
[255, 255, 255, 255]
>>>
>>> convert(-1306918380)
[178, 26, 2, 20]
>>>

答案 2 :(得分:2)

使用python内置除法和模数可以在我的测试中提供6倍的加速。

def convert(i):
    i = i % 4294967296
    n4 = i % 256
    i = i / 256
    n3 = i % 256
    i = i / 256
    n2 = i % 256
    n1 = i / 256
    return (n1,n2,n3,n4)

答案 3 :(得分:2)

您可以使用按位操作:

def int32_to_int8(n):
    mask = (1 << 8) - 1
    return [(n >> k) & mask for k in range(0, 32, 8)]

>>> int32_to_int8(32768)
[0, 128, 0, 0]

或者您可以在Python中使用struct package

>>> import struct
>>> int32 = struct.pack("I", 32768)
>>> struct.unpack("B" * 4, int32)

(0, 128, 0, 0)

关于struct包可以利用的一件好事是,您可以非常有效地执行此int32int8

import numpy.random

# Generate some random int32 numbers
x = numpy.random.randint(0, (1 << 31) - 1, 1000)

# Then you can convert all of them to int8 with just one command
x_int8 = struct.unpack('B' * (4*len(x)), buffer(x))

# To verify that the results are valid:
x[0]
Out[29]: 1219620060

int32_to_int8(x[0])
Out[30]: [220, 236, 177, 72]

x_int8[:4]
Out[31]: (220, 236, 177, 72)

# And it's FAST!

%timeit struct.unpack('B' * (4*len(x)), buffer(x))
10000 loops, best of 3: 32 µs per loop

%timeit [int32_to_int8(i) for i in x]
100 loops, best of 3: 6.01 ms per loop

更新:将struct.unpackndarray.view

进行比较
import numpy as np

# this is fast because it only creates the view, without involving any creation
# of objects in Python
%timeit x.view(np.int8)
1000000 loops, best of 3: 570 ns per loop

如果你要进行一些实际的计算:

uint8_type = "B" * len(x) * 4
%timeit sum(struct.unpack(uint8_type, buffer(x)))
10000 loops, best of 3: 52.6 µs per loop

# slow because in order to call sum(), implicitly the view object is converted to
# list.
%timeit sum(x.view(np.int8))
1000 loops, best of 3: 768 µs per loop

# use the numpy.sum() function - without creating Python objects
%timeit np.sum(x.view(np.int8))
100000 loops, best of 3: 8.55 µs per loop # <- FAST!

带回家留言:使用ndarray.view()