我有以下数据结构,并且希望将包含loc字段的文档嵌入到包含持续时间的文档中,但仅当时间戳在时间戳(ts)内减去父文档的持续时间(秒)时。 这是可能的聚合框架还是map reduce?
{
"_id" : ObjectId("53df2a44e6583c76253c9869"),
"deviceId" : NumberLong(1377700226807),
"ts" : ISODate("2014-08-04T08:37:55.000Z"),
"duration" : NumberLong(1642),
}
{
"_id" : ObjectId("53df2a41e6583c4e243c9869"),
"deviceId" : NumberLong(1377700226807),
"ts" : ISODate("2014-08-04T08:37:53.000Z"),
"loc" : {
"lon" : 5.1101453,
"lat" : 52.0625047
}
}
{
"_id" : ObjectId("53df2a3fe6583c38203c986a"),
"deviceId" : NumberLong(1377700226807),
"ts" : ISODate("2014-08-04T08:37:50.000Z"),
"loc" : {
"lon" : 5.1101297,
"lat" : 52.0625031
}
}
{
"_id" : ObjectId("53df2a44e6583c76253c9869"),
"deviceId" : NumberLong(1377700226807),
"ts" : ISODate("2014-08-04T06:37:55.000Z"),
"duration" : NumberLong(3600),
}
{
"_id" : ObjectId("53df2a38e6583c03253c9869"),
"deviceId" : NumberLong(1377700226807),
"ts" : ISODate("2014-08-04T06:37:44.000Z"),
"loc" : {
"lon" : 5.1101176,
"lat" : 52.0625171
}
}
{
"_id" : ObjectId("53df2a33e6583c51243c9869"),
"deviceId" : NumberLong(1377700226807),
"ts" : ISODate("2014-08-04T06:37:38.000Z"),
"loc" : {
"lon" : 5.1101409,
"lat" : 52.0625818
}
}
{
"_id" : ObjectId("53df2a2de6583c38203c9869"),
"deviceId" : NumberLong(1377700226807),
"ts" : ISODate("2014-08-04T06:37:32.000Z"),
"loc" : {
"lon" : 5.1099513,
"lat" : 52.0624157
}
}
这是所需的格式
{
"_id" : ObjectId("53df2a44e6583c76253c9869"),
"deviceId" : NumberLong(1377700226807),
"ts" : ISODate("2014-08-04T08:37:55.000Z"),
"duration" : NumberLong(1642),
"data" : [
{
"ts" : ISODate("2014-08-04T08:37:53.000Z"),
"loc" : {
"lon" : 5.1101453,
"lat" : 52.0625047
}
},
{
"ts" : ISODate("2014-08-04T08:37:50.000Z"),
"loc" : {
"lon" : 5.1101297,
"lat" : 52.0625031
}
}
]
}
答案 0 :(得分:1)
聚合框架无法保留"处理管道时跨文档的信息。那种"父母/孩子"您正在描述的关系,通过与父母的比较来确定该元素的位置"因此,无法在文件中直接指明的文件。
然而,mapReduce方法可以访问" global"范围变量。这可以允许识别"然后可以将父细节存储在变量中,以便根据需要与可能的子项进行比较。
db.collection.mapReduce(
function() {
lastValue.data = [];
if ( lastId == null || this.hasOwnProperty("duration") ) {
lastId = this._id;
lastValue.deviceId = this.deviceId;
lastValue.ts = this.ts;
lastValue.duration = this.duration;
}
if (
( this.hasOwnProperty("loc") ) &&
(
( lastValue.ts.valueOf() - ( lastValue.duration * 1000 ) ) <
this.ts.valueOf()
)
)
lastValue.data.push({
"ts": this.ts,
"loc": this.loc
});
emit ( lastId, lastValue );
},
function (key,values) {
var reduced = {};
values.forEach(function(value) {
if ( !reduced.hasOwnProperty("deviceId") ) {
reduced.deviceId = value.deviceId;
reduced.ts = value.ts;
reduced.duration = value.duration;
reduced.data = [];
}
value.data.forEach(function(dat) {
reduced.data.push(dat);
});
});
return reduced;
},
{
"sort": { "ts": -1 },
"scope": { "lastId": null, "lastValue": {} },
"out": { "inline": 1 }
}
)
所以基本上这是&#34;存储&#34; &#34;键&#34;作为&#34; lastId&#34;使用&#34;范围&#34; mapReduce可用的声明。清除&#34;父母&#34;文档包含持续时间,因此可以在此处使用。
&#34;数据&#34;元素需要作为数组发出。这是由文档中描述的requirement of the "reduce" function引起的。关键是输入必须与预期输入的格式相同。 &#34;减少&#34;每个&#34;键&#34;。
可以多次调用函数&#34;映射器中的条件&#34;可以在&#34; reduce&#34;之前限制此数组中存在的值。虽然调用了函数。这也避免了依赖于添加&#34; finalize&#34;如果只有一个&#34;键&#34;发出,&#34;减少&#34;函数不会触摸此项目。因此,预先进行过滤的工作量会减少。
&#34;减速机&#34;然后现在降级为&#34;合并&#34;将结果组合在&#34;数据&#34;有资格列入&#34;儿童&#34;。
自然地,排序顺序是&#34;降序&#34;时间戳或&#34; ts&#34;值。这将是索引的一个好点,并且顺序与文档的处理方式一致,以便进行比较,因此每个&#34;断点&#34;在检测到新父项的地方有效。
输出当然是mapReduce样式。所以到达你的'#34;确切&#34;期望的输出需要更多的后期处理,但正如您所看到的那样基本上是结果:
"results" : [
{
"_id" : ObjectId("53f15b8beb75bdce84f914a1"),
"value" : {
"deviceId" : NumberLong("1377700226807"),
"ts" : ISODate("2014-08-04T08:37:55Z"),
"duration" : NumberLong(1642),
"data" : [
{
"ts" : ISODate("2014-08-04T08:37:53Z"),
"loc" : {
"lon" : 5.1101453,
"lat" : 52.0625047
}
},
{
"ts" : ISODate("2014-08-04T08:37:50Z"),
"loc" : {
"lon" : 5.1101297,
"lat" : 52.0625031
}
}
]
}
},
{
"_id" : ObjectId("53f15b8beb75bdce84f914a4"),
"value" : {
"deviceId" : NumberLong("1377700226807"),
"ts" : ISODate("2014-08-04T06:37:55Z"),
"duration" : NumberLong(3600),
"data" : [
{
"ts" : ISODate("2014-08-04T06:37:44Z"),
"loc" : {
"lon" : 5.1101176,
"lat" : 52.0625171
}
},
{
"ts" : ISODate("2014-08-04T06:37:38Z"),
"loc" : {
"lon" : 5.1101409,
"lat" : 52.0625818
},
{
"ts" : ISODate("2014-08-04T06:37:32Z"),
"loc" : {
"lon" : 5.1099513,
"lat" : 52.0624157
}
}
]
}
}
]
请注意,此处给出的输出为不同的_id
值,因为样本包含&#34;重复&#34; _id
的值,当然不允许在主键上使用。
答案 1 :(得分:1)
使用聚合框架并不容易,但可以使用MapReduce完成。
假设数据是收集的属性(即没有遗漏&#34;乘坐&#34;文件的持续时间为&#34; loc&#34;值的文件)你可以这样做:
map=function () {
var startTime;
if (this.hasOwnProperty("duration"))
startTime=this.ts-this.duration*1000;
else
startTime=this.ts;
emit(this.deviceId, {startTs:new Date(startTime), endTs:this.ts, loc:this.loc, duration:this.duration});
}
Map以标准化格式输出内容,每个deviceId将它们全部减少为一个数组。
reduce=function (key,values) {
var result = { vals : [ ] };
values.forEach(function(v) {
result.vals.push(v);
})
return result;
}
所有实际处理(每个deviceId的分组)都发生在finalize
函数中,该函数为每个deviceId
获取一个数组,并对其进行排序,并将其分组到您期望的文档中。
finalize=function (key, value) {
var lastI=-1;
var result = {rides: [ ] };
var ride = { };
value.vals.sort(function(a,b) { return a.startTs.getTime() - b.startTs.getTime(); } );
for (i=0; i<value.vals.length; i++) {
if (value.vals[i].loc == null ) {
if (ride.hasOwnProperty("locations")) {
result.rides.push(ride);
ride={};
}
ride["start"]=value.vals[i].startTs;
ride["end"]=value.vals[i].endTs;
ride["duration"]=value.vals[i].duration;
ride["locations"]=[];
lastI=i;
} else {
ride.locations.push({ loc: value.vals[i].loc, ts: value.vals[i].endTs});
}
}
result.rides.push(ride);
return result;
}
我在测试数据中添加了几个deviceIds:
db.rides.find({},{_id:0})
{ "deviceId" : NumberLong("1377700226807"), "ts" : ISODate("2014-08-04T06:37:32Z"), "loc" : { "lon" : 5.1099513, "lat" : 52.0624157 } }
{ "deviceId" : NumberLong("1377700226910"), "ts" : ISODate("2014-08-04T06:37:32Z"), "loc" : { "lon" : 5.1099513, "lat" : 52.0624157 } }
{ "deviceId" : NumberLong("1377700226807"), "ts" : ISODate("2014-08-04T06:37:38Z"), "loc" : { "lon" : 5.1101409, "lat" : 52.0625818 } }
{ "deviceId" : NumberLong("1377700226910"), "ts" : ISODate("2014-08-04T06:37:38Z"), "loc" : { "lon" : 5.1101409, "lat" : 52.0625818 } }
{ "deviceId" : NumberLong("1377700226807"), "ts" : ISODate("2014-08-04T06:37:44Z"), "loc" : { "lon" : 5.1101176, "lat" : 52.0625171 } }
{ "deviceId" : NumberLong("1377700226910"), "ts" : ISODate("2014-08-04T06:37:44Z"), "loc" : { "lon" : 5.1101176, "lat" : 52.0625171 } }
{ "deviceId" : NumberLong("1377700226807"), "ts" : ISODate("2014-08-04T06:37:55Z"), "duration" : NumberLong(3600) }
{ "deviceId" : NumberLong("1377700226910"), "ts" : ISODate("2014-08-04T06:37:55Z"), "duration" : NumberLong(3600) }
{ "deviceId" : NumberLong("1377700226807"), "ts" : ISODate("2014-08-04T08:37:50Z"), "loc" : { "lon" : 5.1101297, "lat" : 52.0625031 } }
{ "deviceId" : NumberLong("1377700226908"), "ts" : ISODate("2014-08-04T08:37:50Z"), "loc" : { "lon" : 5.1101297, "lat" : 52.0625031 } }
{ "deviceId" : NumberLong("1377700226807"), "ts" : ISODate("2014-08-04T08:37:53Z"), "loc" : { "lon" : 5.1101453, "lat" : 52.0625047 } }
{ "deviceId" : NumberLong("1377700226908"), "ts" : ISODate("2014-08-04T08:37:53Z"), "loc" : { "lon" : 5.1101453, "lat" : 52.0625047 } }
{ "deviceId" : NumberLong("1377700226807"), "ts" : ISODate("2014-08-04T08:37:55Z"), "duration" : NumberLong(1642) }
{ "deviceId" : NumberLong("1377700226908"), "ts" : ISODate("2014-08-04T08:37:55Z"), "duration" : NumberLong(1642) }
并通过MR
运行db.rides.mapReduce(map, reduce, {out:"newrides", finalize:finalize})
{
"result" : "frides",
"timeMillis" : 47,
"counts" : {
"input" : 14,
"emit" : 14,
"reduce" : 3,
"output" : 3
},
"ok" : 1
}
结果是:
db.newrides.find().pretty()
{
"_id" : NumberLong("1377700226807"),
"value" : {
"rides" : [
{
"start" : ISODate("2014-08-04T05:37:55Z"),
"end" : ISODate("2014-08-04T06:37:55Z"),
"duration" : NumberLong(3600),
"locations" : [
{
"loc" : {
"lon" : 5.1099513,
"lat" : 52.0624157
},
"ts" : ISODate("2014-08-04T06:37:32Z")
},
{
"loc" : {
"lon" : 5.1101409,
"lat" : 52.0625818
},
"ts" : ISODate("2014-08-04T06:37:38Z")
},
{
"loc" : {
"lon" : 5.1101176,
"lat" : 52.0625171
},
"ts" : ISODate("2014-08-04T06:37:44Z")
}
]
},
{
"start" : ISODate("2014-08-04T08:10:33Z"),
"end" : ISODate("2014-08-04T08:37:55Z"),
"duration" : NumberLong(1642),
"locations" : [
{
"loc" : {
"lon" : 5.1101297,
"lat" : 52.0625031
},
"ts" : ISODate("2014-08-04T08:37:50Z")
},
{
"loc" : {
"lon" : 5.1101453,
"lat" : 52.0625047
},
"ts" : ISODate("2014-08-04T08:37:53Z")
}
]
}
]
}
}
{
"_id" : NumberLong("1377700226908"),
"value" : {
"rides" : [
{
"start" : ISODate("2014-08-04T08:10:33Z"),
"end" : ISODate("2014-08-04T08:37:55Z"),
"duration" : NumberLong(1642),
"locations" : [
{
"loc" : {
"lon" : 5.1101297,
"lat" : 52.0625031
},
"ts" : ISODate("2014-08-04T08:37:50Z")
},
{
"loc" : {
"lon" : 5.1101453,
"lat" : 52.0625047
},
"ts" : ISODate("2014-08-04T08:37:53Z")
}
]
}
]
}
}
{
"_id" : NumberLong("1377700226910"),
"value" : {
"rides" : [
{
"start" : ISODate("2014-08-04T05:37:55Z"),
"end" : ISODate("2014-08-04T06:37:55Z"),
"duration" : NumberLong(3600),
"locations" : [
{
"loc" : {
"lon" : 5.1099513,
"lat" : 52.0624157
},
"ts" : ISODate("2014-08-04T06:37:32Z")
},
{
"loc" : {
"lon" : 5.1101409,
"lat" : 52.0625818
},
"ts" : ISODate("2014-08-04T06:37:38Z")
},
{
"loc" : {
"lon" : 5.1101176,
"lat" : 52.0625171
},
"ts" : ISODate("2014-08-04T06:37:44Z")
}
]
}
]
}
}