如何绘制样本的PMF?

时间:2014-08-12 20:22:24

标签: python matplotlib plot pandas scipy

是否有任何函数或库可以帮助我绘制样本的概率质量函数,就像绘制样本的概率密度函数一样?

例如,使用pandas,绘制PDF就像调用:

一样简单
sample.plot(kind="density")

如果没有简单的方法,我如何计算PMF,以便我可以使用matplotlib进行绘图?

4 个答案:

答案 0 :(得分:9)

如果ts是一个系列,您可以通过以下方式获得样本的PMF:

>>> pmf = ts.value_counts().sort_index() / len(ts)

并通过以下方式绘制:

>>> pmf.plot(kind='bar')

可以使用np.unique

完成numpy only解决方案
>>> xs = np.random.randint(0, 10, 100)
>>> xs
array([5, 2, 2, 1, 2, 8, 6, 7, 5, 3, 2, 6, 4, 9, 7, 6, 4, 7, 6, 8, 7, 0, 6,
       2, 9, 8, 7, 7, 2, 6, 2, 8, 0, 2, 5, 1, 3, 6, 7, 7, 2, 2, 0, 3, 8, 7,
       4, 0, 5, 7, 5, 4, 4, 9, 5, 1, 6, 6, 0, 9, 4, 2, 0, 8, 7, 5, 1, 1, 2,
       8, 3, 8, 9, 0, 0, 6, 8, 7, 2, 6, 7, 9, 7, 8, 8, 3, 3, 7, 8, 2, 2, 4,
       4, 5, 3, 4, 1, 5, 5, 1])

>>> val, cnt = np.unique(xs, return_counts=True)
>>> pmf = cnt / len(xs)

>>> # values along with probability mass function
>>> np.column_stack((val, pmf))
array([[ 0.  ,  0.08],
       [ 1.  ,  0.07],
       [ 2.  ,  0.15],
       [ 3.  ,  0.07],
       [ 4.  ,  0.09],
       [ 5.  ,  0.1 ],
       [ 6.  ,  0.11],
       [ 7.  ,  0.15],
       [ 8.  ,  0.12],
       [ 9.  ,  0.06]])

答案 1 :(得分:1)

给出df的熊猫数据框,使用seaborn可以编写

import seaborn as sns

probabilities = df['SomeColumn'].value_counts(normalize=True)    
sns.barplot(probabilities.index, probabilities.values)

答案 2 :(得分:0)

您可以使用np.histogram使用density=true 计算PMF,前提是使用了单位宽度的区间(否则您将获得概率密度函数的值) bin很可能不是你需要的。)

>>> xs = np.array(
          [5, 2, 2, 1, 2, 8, 6, 7, 5, 3, 2, 6, 4, 9, 7, 6, 4, 7, 6, 8, 7, 0, 6,
           2, 9, 8, 7, 7, 2, 6, 2, 8, 0, 2, 5, 1, 3, 6, 7, 7, 2, 2, 0, 3, 8, 7,
           4, 0, 5, 7, 5, 4, 4, 9, 5, 1, 6, 6, 0, 9, 4, 2, 0, 8, 7, 5, 1, 1, 2,
           8, 3, 8, 9, 0, 0, 6, 8, 7, 2, 6, 7, 9, 7, 8, 8, 3, 3, 7, 8, 2, 2, 4,
           4, 5, 3, 4, 1, 5, 5, 1])

>>> pmf, bins = np.histogram(xs, bins=range(0,11), density=True)
>>> np.column_stack((bins[:-1], pmf))
array([[ 0.  ,  0.08],
       [ 1.  ,  0.07],
       [ 2.  ,  0.15],
       [ 3.  ,  0.07],
       [ 4.  ,  0.09],
       [ 5.  ,  0.1 ],
       [ 6.  ,  0.11],
       [ 7.  ,  0.15],
       [ 8.  ,  0.12],
       [ 9.  ,  0.06]])

答案 3 :(得分:0)

import matplotlib.pyplot as plt
import seaborn as sns
samp = [5, 2, 2, 1, 2, 8, 6, 7, 5, 3, 2, 6, 4, 9, 7, 6, 4, 7, 6, 8, 7, 0, 6,
       2, 9, 8, 7, 7, 2, 6, 2, 8, 0, 2, 5, 1, 3, 6, 7, 7, 2, 2, 0, 3, 8, 7,
       4, 0, 5, 7, 5, 4, 4, 9, 5, 1, 6, 6, 0, 9, 4, 2, 0, 8, 7, 5, 1, 1, 2,
       8, 3, 8, 9, 0, 0, 6, 8, 7, 2, 6, 7, 9, 7, 8, 8, 3, 3, 7, 8, 2, 2, 4,
       4, 5, 3, 4, 1, 5, 5, 1]

plt.ylabel('PMF')
sns.histplot(samp, stat='probability', bins=20);

enter image description here