是否可以在Cloudera-Quickstart-CDH-VM中使用Avro Sink / Source设置Flume Client-Collector-Structure?我知道没有实际用途,但是我想了解Flume如何使用Avro文件以及我以后如何在PIG等中使用它们。
它尝试了几种配置,但是没有配置。对我而言,我似乎需要多个代理,但VM中只能有一个代理。
我上次尝试的内容:
agent.sources = reader avro-collection-source
agent.channels = memoryChannel memoryChannel2
agent.sinks = avro-forward-sink hdfs-sink
#Client
agent.sources.reader.type = exec
agent.sources.reader.command = tail -f /home/flume/avro/source.txt
agent.sources.reader.logStdErr = true
agent.sources.reader.restart = true
agent.sources.reader.channels = memoryChannel
agent.sinks.avro-forward-sink.type = avro
agent.sinks.avro-forward-sink.hostname = 127.0.0.1
agent.sinks.avro-forward-sink.port = 80
agent.sinks.avro-forward-sink.channel = memoryChannel
agent.channels.memoryChannel.type = memory
agent.channels.memoryChannel.capacity = 10000
agent.channels.memoryChannel.transactionCapacity = 100
# Collector
agent.sources.avro-collection-source.type = avro
agent.sources.avro-collection-source.bind = 127.0.0.1
agent.sources.avro-collection-source.port = 80
agent.sources.avro-collection-source.channels = memoryChannel2
agent.sinks.hdfs-sink.type = hdfs
agent.sinks.hdfs-sink.hdfs.path = /var/flume/avro
agent.sinks.hdfs-sink.channel = memoryChannel2
agent.channels.memoryChannel2.type = memory
agent.channels.memoryChannel2.capacity = 20000
agent.channels.memoryChannel2.transactionCapacity = 2000
感谢您的任何建议!
答案 0 :(得分:1)
我认为这可以做到。在下面给出的示例中,我使用的是源(source1),它从假脱机目录源读取并将其转储到avro接收器。我有另一个源(source2),它是一个avro源并链接到source1的avro接收器。通过这种方式,您可以获得所需的流量。请根据您的使用修改此conf文件:
# Sources, channels, and sinks are defined per
# agent name, in this case 'tier1'.
dataplatform.sources = source1 source2
dataplatform.channels = channel1 channel3
dataplatform.sinks = sink1 sink2 sink3
# For each source, channel, and sink, set standard properties.
dataplatform.sources.source1.type = spooldir
dataplatform.sources.source1.spoolDir = /home/flume/flume-sink-clean/
dataplatform.sources.source1.deserializer.maxLineLength = 1000000
dataplatform.sources.source1.deletePolicy = immediate
dataplatform.sources.source1.batchSize = 10000
dataplatform.sources.source1.decodeErrorPolicy = IGNORE
# Channel Type
dataplatform.channels.channel1.type = FILE
dataplatform.channels.channel1.checkpointDir = /home/flume/flume_file_channel/dataplatform/file-channel/checkpoint
dataplatform.channels.channel1.dataDirs = /home/flume/flume_file_channel/dataplatform/file-channel/data
dataplatform.channels.channel1.write-timeout = 60
dataplatform.channels.channel1.use-fast-replay = true
dataplatform.channels.channel1.transactionCapacity = 1000000
dataplatform.channels.channel1.maxFileSize = 2146435071
dataplatform.channels.channel1.capacity = 100000000
# Describe Sink2
dataplatform.sinks.sink2.type = avro
dataplatform.sinks.sink2.hostname = 0.0.0.0
dataplatform.sinks.sink2.port = 20002
dataplatform.sinks.sink2.batch-size = 10000
# Describe source2
dataplatform.sources.source2.type = avro
dataplatform.sources.source2.bind = 0.0.0.0
dataplatform.sources.source2.port = 20002
# Channel3: Source 2 to Channel3 to Local
dataplatform.channels.channel3.type = FILE
dataplatform.channels.channel3.checkpointDir = /home/flume/flume_file_channel/local/file-channel/checkpoint
dataplatform.channels.channel3.dataDirs = /home/flume/flume_file_channel/local/file-channel/data
dataplatform.channels.channel3.transactionCapacity = 1000000
dataplatform.channels.channel3.checkpointInterval = 30000
dataplatform.channels.channel3.maxFileSize = 2146435071
dataplatform.channels.channel3.capacity = 10000000
# Describe Sink3 (Local File System)
dataplatform.sinks.sink3.type = file_roll
dataplatform.sinks.sink3.sink.directory = /home/flume/flume-sink/
dataplatform.sinks.sink3.sink.rollInterval = 60
dataplatform.sinks.sink3.batchSize = 1000
# Bind the source and sink to the channel
dataplatform.sources.source1.channels = channel1
dataplatform.sources.source2.channels = channel3
dataplatform.sinks.sink1.channel = channel1
dataplatform.sinks.sink2.channel = channel2
dataplatform.sinks.sink3.channel = channel3