我之前曾要求here提出以下代码行:
parameters = [{'weights': ['uniform'], 'n_neighbors': [5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100]}]
clf = GridSearchCV(neighbors.KNeighborsRegressor(), parameters, n_jobs=4)
clf.fit(features, rewards)
但是,当我运行这个时,出现了另一个与之前提出的问题无关的问题。 Python最终会出现以下操作系统错误消息:
Process: Python [1327]
Path: /Library/Frameworks/Python.framework/Versions/2.7/Resources/Python.app/Contents/MacOS/Python
Identifier: Python
Version: 2.7.2.5 (2.7.2.5.r64662-trunk)
Code Type: X86-64 (Native)
Parent Process: Python [1316]
Responsible: Sublime Text 2 [308]
User ID: 501
Date/Time: 2014-08-12 10:27:24.640 +0200
OS Version: Mac OS X 10.9.4 (13E28)
Report Version: 11
Anonymous UUID: D10CD8B7-221F-B121-98D4-4574A1F2189F
Sleep/Wake UUID: 0B9C4AE0-26E6-4DE8-B751-665791968115
Crashed Thread: 0 Dispatch queue: com.apple.main-thread
Exception Type: EXC_BAD_ACCESS (SIGSEGV)
Exception Codes: KERN_INVALID_ADDRESS at 0x0000000000000110
VM Regions Near 0x110:
-->
__TEXT 0000000100000000-0000000100001000 [ 4K] r-x/rwx SM=COW /Library/Frameworks/Python.framework/Versions/2.7/Resources/Python.app/Contents/MacOS/Python
Application Specific Information:
*** multi-threaded process forked ***
crashed on child side of fork pre-exec
Thread 0 Crashed:: Dispatch queue: com.apple.main-thread
0 libdispatch.dylib 0x00007fff91534c90 dispatch_group_async_f + 141
1 libBLAS.dylib 0x00007fff9413f791 APL_sgemm + 1061
2 libBLAS.dylib 0x00007fff9413cb3f cblas_sgemm + 1267
3 _dotblas.so 0x0000000102b0236e dotblas_matrixproduct + 5934
4 org.activestate.ActivePython27 0x00000001000c552d PyEval_EvalFrameEx + 23949
5 org.activestate.ActivePython27 0x00000001000c7ad6 PyEval_EvalCodeEx + 2118
6 org.activestate.ActivePython27 0x00000001000c5d10 PyEval_EvalFrameEx + 25968
7 org.activestate.ActivePython27 0x00000001000c7ad6 PyEval_EvalCodeEx + 2118
8 org.activestate.ActivePython27 0x000000010003d390 function_call + 176
9 org.activestate.ActivePython27 0x000000010000be12 PyObject_Call + 98
10 org.activestate.ActivePython27 0x00000001000c098a PyEval_EvalFrameEx + 4586
11 org.activestate.ActivePython27 0x00000001000c7ad6 PyEval_EvalCodeEx + 2118
12 org.activestate.ActivePython27 0x00000001000c5d10 PyEval_EvalFrameEx + 25968
13 org.activestate.ActivePython27 0x00000001000c7ad6 PyEval_EvalCodeEx + 2118
14 org.activestate.ActivePython27 0x00000001000c5d10 PyEval_EvalFrameEx + 25968
15 org.activestate.ActivePython27 0x00000001000c7137 PyEval_EvalFrameEx + 31127
16 org.activestate.ActivePython27 0x00000001000c7137 PyEval_EvalFrameEx + 31127
17 org.activestate.ActivePython27 0x00000001000c7ad6 PyEval_EvalCodeEx + 2118
18 org.activestate.ActivePython27 0x000000010003d390 function_call + 176
19 org.activestate.ActivePython27 0x000000010000be12 PyObject_Call + 98
20 org.activestate.ActivePython27 0x00000001000c098a PyEval_EvalFrameEx + 4586
21 org.activestate.ActivePython27 0x00000001000c7ad6 PyEval_EvalCodeEx + 2118
22 org.activestate.ActivePython27 0x000000010003d390 function_call + 176
23 org.activestate.ActivePython27 0x000000010000be12 PyObject_Call + 98
24 org.activestate.ActivePython27 0x000000010001d36d instancemethod_call + 365
25 org.activestate.ActivePython27 0x000000010000be12 PyObject_Call + 98
26 org.activestate.ActivePython27 0x0000000100077dfa slot_tp_call + 74
27 org.activestate.ActivePython27 0x000000010000be12 PyObject_Call + 98
28 org.activestate.ActivePython27 0x00000001000c098a PyEval_EvalFrameEx + 4586
29 org.activestate.ActivePython27 0x00000001000c7ad6 PyEval_EvalCodeEx + 2118
30 org.activestate.ActivePython27 0x000000010003d390 function_call + 176
31 org.activestate.ActivePython27 0x000000010000be12 PyObject_Call + 98
32 org.activestate.ActivePython27 0x00000001000c098a PyEval_EvalFrameEx + 4586
33 org.activestate.ActivePython27 0x00000001000c7137 PyEval_EvalFrameEx + 31127
34 org.activestate.ActivePython27 0x00000001000c7137 PyEval_EvalFrameEx + 31127
35 org.activestate.ActivePython27 0x00000001000c7ad6 PyEval_EvalCodeEx + 2118
36 org.activestate.ActivePython27 0x000000010003d390 function_call + 176
37 org.activestate.ActivePython27 0x000000010000be12 PyObject_Call + 98
38 org.activestate.ActivePython27 0x000000010001d36d instancemethod_call + 365
39 org.activestate.ActivePython27 0x000000010000be12 PyObject_Call + 98
40 org.activestate.ActivePython27 0x0000000100077a28 slot_tp_init + 88
41 org.activestate.ActivePython27 0x0000000100074e25 type_call + 245
42 org.activestate.ActivePython27 0x000000010000be12 PyObject_Call + 98
43 org.activestate.ActivePython27 0x00000001000c267d PyEval_EvalFrameEx + 11997
44 org.activestate.ActivePython27 0x00000001000c7137 PyEval_EvalFrameEx + 31127
45 org.activestate.ActivePython27 0x00000001000c7137 PyEval_EvalFrameEx + 31127
46 org.activestate.ActivePython27 0x00000001000c7ad6 PyEval_EvalCodeEx + 2118
47 org.activestate.ActivePython27 0x000000010003d390 function_call + 176
48 org.activestate.ActivePython27 0x000000010000be12 PyObject_Call + 98
49 org.activestate.ActivePython27 0x000000010001d36d instancemethod_call + 365
50 org.activestate.ActivePython27 0x000000010000be12 PyObject_Call + 98
51 org.activestate.ActivePython27 0x0000000100077a28 slot_tp_init + 88
52 org.activestate.ActivePython27 0x0000000100074e25 type_call + 245
53 org.activestate.ActivePython27 0x000000010000be12 PyObject_Call + 98
54 org.activestate.ActivePython27 0x00000001000c267d PyEval_EvalFrameEx + 11997
55 org.activestate.ActivePython27 0x00000001000c7ad6 PyEval_EvalCodeEx + 2118
56 org.activestate.ActivePython27 0x00000001000c5d10 PyEval_EvalFrameEx + 25968
57 org.activestate.ActivePython27 0x00000001000c7ad6 PyEval_EvalCodeEx + 2118
58 org.activestate.ActivePython27 0x000000010003d390 function_call + 176
59 org.activestate.ActivePython27 0x000000010000be12 PyObject_Call + 98
60 org.activestate.ActivePython27 0x000000010001d36d instancemethod_call + 365
61 org.activestate.ActivePython27 0x000000010000be12 PyObject_Call + 98
62 org.activestate.ActivePython27 0x0000000100077dfa slot_tp_call + 74
63 org.activestate.ActivePython27 0x000000010000be12 PyObject_Call + 98
64 org.activestate.ActivePython27 0x00000001000c267d PyEval_EvalFrameEx + 11997
65 org.activestate.ActivePython27 0x00000001000c7ad6 PyEval_EvalCodeEx + 2118
66 org.activestate.ActivePython27 0x00000001000c5d10 PyEval_EvalFrameEx + 25968
67 org.activestate.ActivePython27 0x00000001000c7ad6 PyEval_EvalCodeEx + 2118
68 org.activestate.ActivePython27 0x00000001000c5d10 PyEval_EvalFrameEx + 25968
69 org.activestate.ActivePython27 0x00000001000c7ad6 PyEval_EvalCodeEx + 2118
70 org.activestate.ActivePython27 0x00000001000c5d10 PyEval_EvalFrameEx + 25968
71 org.activestate.ActivePython27 0x00000001000c7ad6 PyEval_EvalCodeEx + 2118
72 org.activestate.ActivePython27 0x00000001000c7bf6 PyEval_EvalCode + 54
73 org.activestate.ActivePython27 0x00000001000ed31e PyRun_FileExFlags + 174
74 org.activestate.ActivePython27 0x00000001000ed5d9 PyRun_SimpleFileExFlags + 489
75 org.activestate.ActivePython27 0x00000001001041dc Py_Main + 2940
76 org.activestate.ActivePython27.app 0x0000000100000ed4 0x100000000 + 3796
Thread 0 crashed with X86 Thread State (64-bit):
rax: 0x0000000000000100 rbx: 0x00007fff7cd43640 rcx: 0x0000000000000000 rdx: 0x0000000105e00000
rdi: 0x0000000000000008 rsi: 0x0000000105e01000 rbp: 0x00007fff5fbfa370 rsp: 0x00007fff5fbfa350
r8: 0x0000000000000001 r9: 0x0000000105e00000 r10: 0x0000000105e01000 r11: 0x0000000000000000
r12: 0x000000010ba10530 r13: 0x000000010b000000 r14: 0x00000001066d1970 r15: 0x00007fff915311af
rip: 0x00007fff91534c90 rfl: 0x0000000000010206 cr2: 0x0000000000000110
Logical CPU: 2
Error Code: 0x00000006
Trap Number: 14
.........
VM Region Summary:
ReadOnly portion of Libraries: Total=183.7M resident=97.0M(53%) swapped_out_or_unallocated=86.7M(47%)
Writable regions: Total=1.3G written=142.8M(11%) resident=503.6M(39%) swapped_out=0K(0%) unallocated=791.7M(61%)
当我在代码中替换第二行时:
clf = GridSearchCV(neighbors.KNeighborsRegressor(), parameters, n_jobs=1)
然后一切正常,除了我不使用多个线程。
我的操作系统是OSX 10.9.4
我的python版本是2.7.8 | Anaconda 2.0.1(x86_64)| (默认,2014年7月2日,15:36:00) [GCC 4.2.1(Apple Inc. build 5577)]
我的scikit-lern版本是0.14.1
我的numpy版本是1.8.1
我的scipy版本是0.14.0
我的问题是,是否有人知道如何在多个线程上运行GridSearchCV?
修改
我已经意识到实际上这个错误只发生在我的一些输入数据集上。不幸的是,有问题的数据集(它的X)太大,所以无法在这里复制它们。输入特征数据基本上是tf-idf向量,y向量是浮点数> 0,特别是:
[60.0, 7.0, 12.0, 21.0, 5.5, 3.0, 0.0, 2.5, 11.0, 3.0, 16.0, 2.0, 0.0, 4.5, 2.5, 6.0, 9.5, 2.5, 15.0, 7.0, 8.0, 13.0, 14.0, 8.0, 3.5, 6.0, 22.5, 7.0, 4.0, 3.5, 4.5, 6.0, 5.5, 7.0, 2.0, 0.0, 0.0, 0.0, 14.5, 8.0, 7.5, 2.5, 11.5, 1.0, 3.0, 14.5, 10.0, 14.5, 8.0, 8.0, 7.0, 2.5, 3.5, 3.0, 13.5, 7.0, 6.5, 2.5, 9.0, 8.0, 11.0, 17.5, 12.5, 4.5, 5.5, 8.0, 2.0, 7.0, 4.0, 1.5, 3.0, 21.5, 4.5, 4.0, 7.0, 9.0, 13.5, 8.0, 10.5, 4.5, 1.5, 11.5, 7.5, 11.5, 4.5, 5.0, 7.0, 9.5, 4.0, 4.0, 6.0, 3.5, 4.5, 7.5, 3.5, 3.5, 3.5, 6.0, 5.0, 5.5, 25.0, 6.5, 5.0, 2.0, 2.0, 10.5, 0.0, 6.5, 19.0, 9.0, 1.0, 1.5, 1.0, 0.0, 1.0, 4.5, 2.5, 17.5, 39.5, 7.5, 5.5, 8.0, 1.0, 6.0, 12.0, 10.0, 5.5, 19.0, 4.5, 1.5, 25.5, 4.0, 10.0, 18.5, 9.5, 10.5, 2.5, 6.0, 1.0, 10.0, 8.5, 12.5, 13.5, 5.0, 6.5, 11.0, 4.5, 8.0, 7.5, 11.5, 14.5, 9.0, 3.0, 1.5, 3.5, 5.5, 2.5, 12.5, 6.5, 5.5, 5.0, 0.0, 8.0, 3.0, 14.5, 5.0, 14.0, 7.0, 13.5, 12.5, 4.0, 1.5, 6.5, 10.5, 9.0, 16.5, 4.0, 4.0, 15.0, 11.5, 2.5, 8.5, 3.0, 5.0, 4.0, 8.5, 6.0, 5.0, 5.0, 5.0, 5.5, 8.0, 11.0, 4.0, 0.0, 5.5, 0.0, 4.5, 1.5, 0.0, 6.5, 11.0, 2.5, 8.0, 15.5, 5.5, 4.5, 5.0, 4.0, 5.5, 10.5, 7.5, 6.5, 8.5, 2.5, 1.5, 1.5, 18.0, 15.0, 14.0, 9.5, 5.5, 7.5, 14.5, 2.5, 5.0, 60.0, 6.5, 14.5, 6.5, 4.0, 1.5, 2.0, 4.0, 27.0, 3.0, 5.0, 4.0, 2.5, 1.0, 1.5, 1.5, 9.0, 4.0, 8.5, 4.0, 4.0, 0.0, 1.5, 7.5, 1.5, 7.5, 1.0, 28.5, 15.5, 7.5, 1.0, 2.5, 2.5, 2.5, 16.0, 5.5, 8.5, 4.0, 2.5, 5.0, 2.5, 6.0, 11.0, 10.0, 4.5, 6.5, 8.0, 6.0, 4.5, 15.5, 4.0, 5.0]
包含1个作业的版本适用于我的所有输入数据集,即使是这个也是如此。
答案 0 :(得分:4)
libdispatch.dylib
在执行numpy.dot
调用时由OSX内置的BLAS实现内部使用,名为Accelerate。当程序在不使用fork
系统调用之后调用POSIX exec
系统调用时,GCD运行时不起作用,因此使得使用multiprocessing
模块的所有Python程序都容易崩溃。 sklearn的GridsearchCV
使用Python multiprocessing
模块进行并行化。
在Python 3.4及更高版本中,您可以强制Python多处理使用forkserver start method而不是默认的fork
模式来解决此问题,例如在程序主文件的开头:< / p>
if __name__ == "__main__":
import multiprocessing as mp; mp.set_start_method('forkserver')
或者,您可以从源重建numpy并使其链接到ATLAS或OpenBLAS而不是OSX Accelerate。 numpy开发人员正在开发二进制发行版,默认情况下包括ATLAS或OpenBLAS。
答案 1 :(得分:1)
这对我来说也很完美(升级有点拖累,但这是许多尝试的唯一修复,在我的情况下有效)。对于任何其他ipython笔记本用户,最好的方法是将其添加到笔记本配置中(尝试在笔记本中直接运行它会出错)。可以像这样添加命令:
# in ipython_notebook_config.py
c.IPKernelApp.exec_lines = ['import multiprocessing', 'multiprocessing.set_start_method("forkserver")']