这是几个月前的another question。问题与使用大小类型的Agda中的终止检查有关。
以下是序言:
{-# OPTIONS --sized-types #-}
module Term where
open import Data.Empty
open import Function
open import Relation.Binary.PropositionalEquality
open import Size
data Type : Set where
: Type
_+_ _⇾_ : Type → Type → Type
Cxt : Set₁
Cxt = Type → Set
-- Adapted from "Names for free: polymorphic views of names and binders",
-- by Bernardy and Pouillard.
data _∷ʳ_ (Γ : Cxt) (V : Cxt) (A : Type) : Set where
here : V A → (Γ ∷ʳ V) A
there : Γ A → (Γ ∷ʳ V) A
-- A renaming from Γ to Γ′.
_⇢_ : Cxt → Cxt → Set
Γ ⇢ Γ′ = ∀ {A} → Γ A → Γ′ A
infixr 19 _⇢_
-- Extend a renaming under a binder.
extend₁ : ∀ {Γ Γ′} → Γ ⇢ Γ′ → ∀ {A} → Γ ∷ʳ (_≡_ A) ⇢ Γ′ ∷ʳ (_≡_ A)
extend₁ f (here x) = here x
extend₁ f (there x) = there (f x)
data Trie (Γs : Cxt → Cxt) (C : Type) : {ι : Size} → Type → Set where
postulate
_ᵀ<$>_ : ∀ {Γs Γs′ : Cxt → Cxt} →
(∀ {C Γ} → (Γs Γ C → Γs′ Γ C)) →
∀ {ι C} → (λ A → Trie Γs A {ι} C) ⇢ (λ A → Trie Γs′ A {ι} C)
上下文为represented polymorphically using de Bruijn indices。尝试的细节并不重要,因此我将类型留空,并简单地假设ᵀ<$>
,这是一种类似fmap的尝试操作。
我想做的是进行以下终止检查。这里给出的大小索引是我粗略的第一次尝试,但终止检查仍然拒绝代码。
data Term (Γ : Type → Set) : {ι : Size} → Type → Set where
var : ∀ {ι A} → Γ A → Term Γ {↑ ι} A
match_as_ : ∀ {ι A A′} → Term Γ {ι} A →
Trie (λ Γ′ → Term (Γ ∷ʳ Γ′) {ι}) A′ A → Term Γ {↑ ι} A′
fun : ∀ {ι A B} → Term (Γ ∷ʳ (_≡_ A)) {ι} B → Term Γ {↑ ι} (A ⇾ B)
_<$>_ : ∀ {ι} {Γ Γ′ : Type → Set} → Γ ⇢ Γ′ → Term Γ {ι} ⇢ Term Γ′ {ι}
_*_ : ∀ {ι Γ Γ′} → (∀ {ι} → Γ ⇢ Term Γ′ {↑ ι}) → Term Γ {ι} ⇢ Term Γ′ {ι}
extend : ∀ {ι Γ Γ′ A} → (∀ {ι} → Γ ⇢ Term Γ′ {↑ ι}) →
(Γ ∷ʳ A) ⇢ Term (Γ′ ∷ʳ A) {↑ ι}
-- Functoriality.
f <$> var x = var (f x)
f <$> match e as m = match f <$> e as (_*_ (extend (var ∘ f)) ᵀ<$> m)
f <$> fun e = fun (extend₁ f <$> e)
-- Monadic bind, a.k.a. substitution.
θ * var x = θ x
θ * (match e as m) = match θ * e as (_*_ (extend θ) ᵀ<$> m)
θ * fun e = fun (extend θ * e)
-- Extend a substitution under a binder.
extend θ (here x) = var (here x)
extend θ (there x) = there <$> θ x
我该如何修复指数?我也很感激帮助理解这个问题。例如,我猜测有
∀ {ι} → Γ ⇢ Term Γ′ {↑ ι}
因为↑会导致替换类型出现问题,但我似乎需要这样才能使var ∘ f
成为extend
的合适参数。 (同样好奇为什么这不会导致不一致的约束,而是对通常的Agda终止检查器失败的代码。)
答案 0 :(得分:2)
如果您将extend₁
概括为extend′
,则可以在不参考替换的情况下定义functoriality,并且所有终止检查都可以:
extend′ : ∀ {Γ Γ′} → Γ ⇢ Γ′ → ∀ {Δ} → Γ ∷ʳ Δ ⇢ Γ′ ∷ʳ Δ
extend′ f (here x) = here x
extend′ f (there x) = there (f x)
_<$>_ : ∀ {ι} {Γ Γ′ : Type → Set}
→ Γ ⇢ Γ′
→ Term Γ {ι} ⇢ Term Γ′ {ι}
_*_ : ∀ {ι Γ Γ′}
→ (∀ {ι} → Γ ⇢ Term Γ′ {↑ ι})
→ Term Γ {ι} ⇢ Term Γ′ {ι}
extend : ∀ {ι Γ Γ′ A}
→ (∀ {ι} → Γ ⇢ Term Γ′ {↑ ι})
→ (Γ ∷ʳ A) ⇢ Term (Γ′ ∷ʳ A) {↑ ι}
-- Functoriality.
f <$> var x = var (f x)
f <$> fun e = fun (extend′ f <$> e)
f <$> match e as m = match f <$> e as (_<$>_ (extend′ f) ᵀ<$> m)
-- Monadic bind, a.k.a. substitution.
θ * var x = θ x
θ * fun e = fun (extend θ * e)
θ * (match e as m) = match θ * e as (_*_ (extend θ) ᵀ<$> m)
-- Extend a substitution under a binder.
extend θ (here x) = var (here x)
extend θ (there x) = there <$> θ x