我试图在网上运行此代码,但它不起作用。错误是
Error using svmclassify (line 53)
The first input should be a `struct` generated by `SVMTRAIN`.
Error in fisheriris_classification (line 27)
pred = svmclassify(svmModel, meas(testIdx,:), 'Showplot',false);
任何人都可以帮我解决这个问题吗?非常感谢你!
clear all;
close all;
load fisheriris %# load iris dataset
groups = ismember(species,'setosa'); %# create a two-class problem
%# number of cross-validation folds:
%# If you have 50 samples, divide them into 10 groups of 5 samples each,
%# then train with 9 groups (45 samples) and test with 1 group (5 samples).
%# This is repeated ten times, with each group used exactly once as a test set.
%# Finally the 10 results from the folds are averaged to produce a single
%# performance estimation.
k=10;
cvFolds = crossvalind('Kfold', groups, k); %# get indices of 10-fold CV
cp = classperf(groups); %# init performance tracker
for i = 1:k %# for each fold
testIdx = (cvFolds == i); %# get indices of test instances
trainIdx = ~testIdx; %# get indices training instances
%# train an SVM model over training instances
svmModel = svmtrain(meas(trainIdx,:), groups(trainIdx), ...
'Autoscale',true, 'Showplot',false, 'Method','QP', ...
'BoxConstraint',2e-1, 'Kernel_Function','rbf', 'RBF_Sigma',1);
%# test using test instances
pred = svmclassify(svmModel, meas(testIdx,:), 'Showplot',false);
%# evaluate and update performance object
cp = classperf(cp, pred, testIdx);
end
%# get accuracy
cp.CorrectRate
%# get confusion matrix
%# columns:actual, rows:predicted, last-row: unclassified instances
cp.CountingMatrix
%with the output:
%ans =
% 0.99333
%ans =
% 100 1
% 0 49
% 0 0
答案 0 :(得分:0)
问题的原因在于我认为MATLAB在搜索路径上找到函数的方式。我相当肯定它仍在尝试使用LIBSVM函数而不是内置的MATLAB函数。以下是有关搜索路径的更多信息:
http://www.mathworks.com/help/matlab/matlab_env/what-is-the-matlab-search-path.html
要验证是否存在此问题,请在命令窗口中尝试以下命令:
>> which -all svmtrain
你会发现内置函数被LIBSVM函数遮蔽了。您可以使用" Set Path"从MATLAB搜索路径中删除LIBSVM。 Toolstrip中的工具,或者从不包含LIBSVM文件的其他目录运行代码。我会推荐第一个选项。要阅读有关内置MATLAB函数的更多信息,请查看以下链接:
http://www.mathworks.com/help/stats/svmtrain.html
http://www.mathworks.com/help/stats/svmclassify.html
如果您想继续使用LIBSVM,我建议您查看以下网站。