数据框sg如下:
time B C D
1 2014-08-04 00:00:04.0 red 0 0
2 2014-08-04 00:00:06.0 red 0 0
3 2014-08-04 00:00:06.0 red 1 0
4 2014-08-04 00:00:06.2 red 0 0
5 2014-08-04 00:00:06.5 red 0 0
6 2014-08-04 00:00:07.0 red 0 1
7 2014-08-04 00:00:07.7 red 0 0
8 2014-08-04 00:00:16.0 red 0 0
9 2014-08-04 00:00:17.0 red 1 0
10 2014-08-04 00:00:18.0 red 0 0
11 2014-08-04 00:00:22.0 red 0 0
12 2014-08-04 00:00:22.0 red 0 0
13 2014-08-04 00:00:22.2 red 0 0
14 2014-08-04 00:00:25.0 red 1 0
15 2014-08-04 00:00:27.0 red 1 0
16 2014-08-04 00:00:28.0 red 0 0
17 2014-08-04 00:00:29.0 red/amber 1 0
18 2014-08-04 00:00:29.0 red/amber 1 1
19 2014-08-04 00:00:30.0 green 0 0
20 2014-08-04 00:00:40.0 green 0 1
21 2014-08-04 00:00:42.4 green 0 0
22 2014-08-04 00:00:43.0 green 0 0
23 2014-08-04 00:00:50.0 red 1 0
24 2014-08-04 00:00:51.2 red 0 0
25 2014-08-04 00:00:52.0 red 0 1
26 2014-08-04 00:00:52.0 red 1 0
27 2014-08-04 00:00:52.2 red 1 0
28 2014-08-04 00:00:52.9 red 1 1
29 2014-08-04 00:00:53.0 red 0 0
30 2014-08-04 00:00:59.0 red 0 1
31 2014-08-04 00:01:02.0 red 0 1
32 2014-08-04 00:01:03.2 red 0 1
33 2014-08-04 00:01:04.0 red 1 1
34 2014-08-04 00:01:06.4 red 0 1
35 2014-08-04 00:01:07.5 red 1 1
36 2014-08-04 00:01:08.0 red 0 1
37 2014-08-04 00:01:08.2 red 0 1
38 2014-08-04 00:01:08.4 red 0 1
39 2014-08-04 00:01:11.0 red 0 1
40 2014-08-04 00:01:13.0 red 0 1
41 2014-08-04 00:01:14.0 red 0 1
42 2014-08-04 00:01:15.0 red/amber 0 1
43 2014-08-04 00:01:15.0 red/amber 0 1
44 2014-08-04 00:01:16.0 green 0 1
45 2014-08-04 00:01:21.0 green 0 0
46 2014-08-04 00:01:26.0 green 0 0
47 2014-08-04 00:01:31.0 amber 0 0
48 2014-08-04 00:01:31.0 amber 0 0
49 2014-08-04 00:01:34.0 red 0 0
50 2014-08-04 00:01:36.0 red 0 0
首先,我需要按时间间隔(例如10秒)将数据帧拆分为组。 其次,分别计算C和D列各组中值“1”的百分比。 最后,在图形中绘制C列和B列的百分比与时间。
我为单变量做了。 我的解决方案是:
percentage.occupied <- function(x) (NROW(subset(x,C==1)))/(NROW(x))
splitbytime <- ddply(selectstatus309, .(cut(time,"10 seconds")),percentage.occupied)
colnames(splitbytime)<-c("time","occupancy")
occupancy <- ggplot(splitbytime, aes(x=(as.POSIXct(splitbytime$time)),y=occupancy)) +
geom_point(shape=1) +
geom_smooth()+
xlab("time") +
ylab("% occupancy")
图形如下图所示,我将其绘制为C列。我需要的是在一个图形中分别绘制C和D的百分比。
我不确定我是否清楚地描述了我的问题(┬_┬)
我采用了BrodieG的解决方案并将其应用到我的数据的一段时间(1小时)。我跟着每一步,但是错误地写了一些: 此外,还有一个错误:
geom_smooth: method="auto" and size of largest group is <1000, so using loess. Use 'method = x' to change the smoothing method.
geom_smooth: method="auto" and size of largest group is >=1000, so using gam with formula: y ~ s(x, bs = "cs"). Use 'method = x' to change the smoothing method.
Error in smooth.construct.cr.smooth.spec(object, data, knots) :
x has insufficient unique values to support 10 knots: reduce k.
我猜错误并不是奇怪情节的原因。 你可以看到熔化的df的一部分如下所示,我从中提到结果不可能只是1或0。
time B variable value
10520 2014-08-04 15:10:00 green dt_5 0
10521 2014-08-04 15:10:00 green dt_5 0
10522 2014-08-04 15:10:00 green dt_5 0
10523 2014-08-04 15:10:00 green dt_5 0
10524 2014-08-04 15:10:00 green dt_5 0
10525 2014-08-04 15:10:00 green dt_5 0
10526 2014-08-04 15:10:00 green dt_5 0
10527 2014-08-04 15:10:00 green dt_5 0
10528 2014-08-04 15:10:00 green dt_5 1
10529 2014-08-04 15:10:00 amber dt_5 1
10530 2014-08-04 15:10:00 amber dt_5 1
10531 2014-08-04 15:10:00 amber dt_5 1
10532 2014-08-04 15:10:00 amber dt_5 1
10533 2014-08-04 15:10:00 amber dt_5 1
10534 2014-08-04 15:10:00 amber dt_5 1
10535 2014-08-04 15:10:00 amber dt_5 0
10536 2014-08-04 15:10:00 amber dt_5 0
10537 2014-08-04 15:10:00 amber dt_5 0
10538 2014-08-04 15:10:00 amber dt_5 0
10539 2014-08-04 15:10:00 amber dt_5 0
10540 2014-08-04 15:10:00 amber dt_5 0
10541 2014-08-04 15:10:00 red dt_5 0
10542 2014-08-04 15:10:00 red dt_5 0
10543 2014-08-04 15:10:00 red dt_5 0
10544 2014-08-04 15:10:00 red dt_5 0
10545 2014-08-04 15:10:00 red dt_5 0
代码在这里:
selectstatus309.mlt <- melt(selectstatus309,id.var=c("time","B"))
percentage<-
ggplot(selectstatus309.mlt, aes(x=time,y=value,color=variable))+
stat_summary(geom="point", fun.y =mean,shape=1)+
stat_smooth()+
facet_wrap(~ B)
对于looooong和冗长的故事感到抱歉! T.T
答案 0 :(得分:2)
这是一个选项。首先我们制作切割时间数据:
library(reshape2)
library(ggplot2)
df$time <- as.POSIXct(cut(as.POSIXct(df$time), "10 secs"))
然后我们将其融合,以便C
和D
中的值位于同一列中,以便我们可以将其用作美学。 这是将两个图表放在同一图形中的关键步骤。检查df.mlt
,看看它与df
的区别。 ggplot
喜欢长格式的数据,以使用它的内置数据分段工具。
df.mlt <- melt(df, id.var=c("time", "B"))
然后我们使用stat_summary
绘制点(不需要诉诸ddply
):
ggplot(df.mlt, aes(x=time, y=value, color=variable)) +
stat_summary(geom="point", fun.y=mean, shape=1) +
stat_smooth()
生成(在您的数据子集上):
请注意我是否能够根据数据来分割数据&#34; C&#34;或&#34; D&#34;。你甚至可以通过B:
来面对ggplot(df.mlt, aes(x=time, y=value, color=variable)) +
stat_summary(geom="point", fun.y=mean, shape=1) +
stat_smooth() +
facet_wrap(~ B)