我使用AWS EC2指南安装了Spark,我可以使用bin/pyspark
脚本启动程序,以获得spark提示,也可以成功完成Quick Start quide。
但是,我不能为我的生活找出如何在每个命令之后停止所有详细的INFO
日志记录。
我在以下代码中尝试了几乎所有可能的方案(注释掉,设置为OFF)在log4j.properties
文件夹中的conf
文件夹中,我在每个文件夹中启动了应用程序节点,什么也没做。执行每个语句后,我仍然会打印日志INFO
语句。
我对这应该如何工作非常困惑。
#Set everything to be logged to the console log4j.rootCategory=INFO, console
log4j.appender.console=org.apache.log4j.ConsoleAppender
log4j.appender.console.target=System.err
log4j.appender.console.layout=org.apache.log4j.PatternLayout
log4j.appender.console.layout.ConversionPattern=%d{yy/MM/dd HH:mm:ss} %p %c{1}: %m%n
# Settings to quiet third party logs that are too verbose
log4j.logger.org.eclipse.jetty=WARN
log4j.logger.org.apache.spark.repl.SparkIMain$exprTyper=INFO
log4j.logger.org.apache.spark.repl.SparkILoop$SparkILoopInterpreter=INFO
当我使用SPARK_PRINT_LAUNCH_COMMAND
时,这是我的完整类路径:
Spark命令: /Library/Java/JavaVirtualMachines/jdk1.8.0_05.jdk/Contents/Home/bin/java -cp:/root/spark-1.0.1-bin-hadoop2/conf:/root/spark-1.0.1-bin-hadoop2/conf:/root/spark-1.0.1-bin-hadoop2/lib/spark-组件-1.0.1-hadoop2.2.0.jar:/root/spark-1.0.1-bin-hadoop2/lib/datanucleus-api-jdo-3.2.1.jar:/root/spark-1.0.1-bin- hadoop2 / lib目录/ DataNucleus将核-3.2.2.jar:/root/spark-1.0.1-bin-hadoop2/lib/datanucleus-rdbms-3.2.1.jar -XX:MaxPermSize = 128m -Djava.library.path = -Xms512m -Xmx512m org.apache.spark.deploy.SparkSubmit spark-shell --class org.apache.spark.repl.Main
spark-env.sh
的内容:
#!/usr/bin/env bash
# This file is sourced when running various Spark programs.
# Copy it as spark-env.sh and edit that to configure Spark for your site.
# Options read when launching programs locally with
# ./bin/run-example or ./bin/spark-submit
# - HADOOP_CONF_DIR, to point Spark towards Hadoop configuration files
# - SPARK_LOCAL_IP, to set the IP address Spark binds to on this node
# - SPARK_PUBLIC_DNS, to set the public dns name of the driver program
# - SPARK_CLASSPATH=/root/spark-1.0.1-bin-hadoop2/conf/
# Options read by executors and drivers running inside the cluster
# - SPARK_LOCAL_IP, to set the IP address Spark binds to on this node
# - SPARK_PUBLIC_DNS, to set the public DNS name of the driver program
# - SPARK_CLASSPATH, default classpath entries to append
# - SPARK_LOCAL_DIRS, storage directories to use on this node for shuffle and RDD data
# - MESOS_NATIVE_LIBRARY, to point to your libmesos.so if you use Mesos
# Options read in YARN client mode
# - HADOOP_CONF_DIR, to point Spark towards Hadoop configuration files
# - SPARK_EXECUTOR_INSTANCES, Number of workers to start (Default: 2)
# - SPARK_EXECUTOR_CORES, Number of cores for the workers (Default: 1).
# - SPARK_EXECUTOR_MEMORY, Memory per Worker (e.g. 1000M, 2G) (Default: 1G)
# - SPARK_DRIVER_MEMORY, Memory for Master (e.g. 1000M, 2G) (Default: 512 Mb)
# - SPARK_YARN_APP_NAME, The name of your application (Default: Spark)
# - SPARK_YARN_QUEUE, The hadoop queue to use for allocation requests (Default: ‘default’)
# - SPARK_YARN_DIST_FILES, Comma separated list of files to be distributed with the job.
# - SPARK_YARN_DIST_ARCHIVES, Comma separated list of archives to be distributed with the job.
# Options for the daemons used in the standalone deploy mode:
# - SPARK_MASTER_IP, to bind the master to a different IP address or hostname
# - SPARK_MASTER_PORT / SPARK_MASTER_WEBUI_PORT, to use non-default ports for the master
# - SPARK_MASTER_OPTS, to set config properties only for the master (e.g. "-Dx=y")
# - SPARK_WORKER_CORES, to set the number of cores to use on this machine
# - SPARK_WORKER_MEMORY, to set how much total memory workers have to give executors (e.g. 1000m, 2g)
# - SPARK_WORKER_PORT / SPARK_WORKER_WEBUI_PORT, to use non-default ports for the worker
# - SPARK_WORKER_INSTANCES, to set the number of worker processes per node
# - SPARK_WORKER_DIR, to set the working directory of worker processes
# - SPARK_WORKER_OPTS, to set config properties only for the worker (e.g. "-Dx=y")
# - SPARK_HISTORY_OPTS, to set config properties only for the history server (e.g. "-Dx=y")
# - SPARK_DAEMON_JAVA_OPTS, to set config properties for all daemons (e.g. "-Dx=y")
# - SPARK_PUBLIC_DNS, to set the public dns name of the master or workers
export SPARK_SUBMIT_CLASSPATH="$FWDIR/conf"
答案 0 :(得分:141)
只需在spark目录中执行此命令:
cp conf/log4j.properties.template conf/log4j.properties
编辑log4j.properties:
# Set everything to be logged to the console
log4j.rootCategory=INFO, console
log4j.appender.console=org.apache.log4j.ConsoleAppender
log4j.appender.console.target=System.err
log4j.appender.console.layout=org.apache.log4j.PatternLayout
log4j.appender.console.layout.ConversionPattern=%d{yy/MM/dd HH:mm:ss} %p %c{1}: %m%n
# Settings to quiet third party logs that are too verbose
log4j.logger.org.eclipse.jetty=WARN
log4j.logger.org.eclipse.jetty.util.component.AbstractLifeCycle=ERROR
log4j.logger.org.apache.spark.repl.SparkIMain$exprTyper=INFO
log4j.logger.org.apache.spark.repl.SparkILoop$SparkILoopInterpreter=INFO
在第一行替换:
log4j.rootCategory=INFO, console
由:
log4j.rootCategory=WARN, console
保存并重新启动shell。它适用于OS X上的Spark 1.1.0和Spark 1.5.1。
答案 1 :(得分:48)
受到pyspark / tests.py的启发我做了
def quiet_logs( sc ):
logger = sc._jvm.org.apache.log4j
logger.LogManager.getLogger("org"). setLevel( logger.Level.ERROR )
logger.LogManager.getLogger("akka").setLevel( logger.Level.ERROR )
在创建SparkContext之后调用它会减少为我的测试从2647到163记录的stderr行。但是创建SparkContext本身会记录163,直到
15/08/25 10:14:16 INFO SparkDeploySchedulerBackend: SchedulerBackend is ready for scheduling beginning after reached minRegisteredResourcesRatio: 0.0
我不清楚如何以编程方式调整这些内容。
答案 2 :(得分:34)
编辑您的conf / log4j.properties文件并更改以下行:
log4j.rootCategory=INFO, console
到
log4j.rootCategory=ERROR, console
另一种方法是:
Fireup spark-shell并输入以下内容:
import org.apache.log4j.Logger
import org.apache.log4j.Level
Logger.getLogger("org").setLevel(Level.OFF)
Logger.getLogger("akka").setLevel(Level.OFF)
之后你不会看到任何日志。
答案 3 :(得分:32)
>>> log4j = sc._jvm.org.apache.log4j
>>> log4j.LogManager.getRootLogger().setLevel(log4j.Level.ERROR)
答案 4 :(得分:24)
对于PySpark,您还可以使用sc.setLogLevel("FATAL")
在脚本中设置日志级别。来自docs:
控制我们的logLevel。这将覆盖任何用户定义的日志设置。有效的日志级别包括:ALL,DEBUG,ERROR,FATAL,INFO,OFF,TRACE,WARN
答案 5 :(得分:21)
在Spark 2.0中,您还可以使用setLogLevel动态为您的应用程序配置它:
from pyspark.sql import SparkSession
spark = SparkSession.builder.\
master('local').\
appName('foo').\
getOrCreate()
spark.sparkContext.setLogLevel('WARN')
在 pyspark 控制台中,默认的spark
会话已经可用。
答案 6 :(得分:13)
这可能是由于Spark如何计算其类路径。我的预感是Hadoop的log4j.properties
文件出现在类路径上的Spark之前,阻止您的更改生效。
如果你跑
SPARK_PRINT_LAUNCH_COMMAND=1 bin/spark-shell
然后Spark将打印用于启动shell的完整类路径;就我而言,我看到了
Spark Command: /usr/lib/jvm/java/bin/java -cp :::/root/ephemeral-hdfs/conf:/root/spark/conf:/root/spark/lib/spark-assembly-1.0.0-hadoop1.0.4.jar:/root/spark/lib/datanucleus-api-jdo-3.2.1.jar:/root/spark/lib/datanucleus-core-3.2.2.jar:/root/spark/lib/datanucleus-rdbms-3.2.1.jar -XX:MaxPermSize=128m -Djava.library.path=:/root/ephemeral-hdfs/lib/native/ -Xms512m -Xmx512m org.apache.spark.deploy.SparkSubmit spark-shell --class org.apache.spark.repl.Main
其中/root/ephemeral-hdfs/conf
位于类路径的头部。
我已经在下一个版本中打开an issue [SPARK-2913]来修复此问题(我应该尽快修补)。
与此同时,这里有几个解决方法:
export SPARK_SUBMIT_CLASSPATH="$FWDIR/conf"
添加到spark-env.sh
。/root/ephemeral-hdfs/conf/log4j.properties
。答案 7 :(得分:9)
您可以使用setLogLevel
val spark = SparkSession
.builder()
.config("spark.master", "local[1]")
.appName("TestLog")
.getOrCreate()
spark.sparkContext.setLogLevel("WARN")
答案 8 :(得分:7)
Spark 1.6.2:
log4j = sc._jvm.org.apache.log4j
log4j.LogManager.getRootLogger().setLevel(log4j.Level.ERROR)
Spark 2.x:
spark.sparkContext.setLogLevel('WARN')
(spark是SparkSession)
或者旧方法,
在Spark Dir中将conf/log4j.properties.template
重命名为conf/log4j.properties
。
在log4j.properties
中,将log4j.rootCategory=INFO, console
更改为log4j.rootCategory=WARN, console
可用的不同日志级别:
答案 9 :(得分:5)
我在Amazon EC2上使用了1个master和2个slave以及Spark 1.2.1。
# Step 1. Change config file on the master node
nano /root/ephemeral-hdfs/conf/log4j.properties
# Before
hadoop.root.logger=INFO,console
# After
hadoop.root.logger=WARN,console
# Step 2. Replicate this change to slaves
~/spark-ec2/copy-dir /root/ephemeral-hdfs/conf/
答案 10 :(得分:1)
我这样做的方式是:
在我运行spark-submit
脚本的位置
$ cp /etc/spark/conf/log4j.properties .
$ nano log4j.properties
将INFO
更改为您想要的任何级别的日志记录,然后运行spark-submit
答案 11 :(得分:1)
只需将以下param添加到您的spark-submit命令中
--conf "spark.driver.extraJavaOptions=-Dlog4jspark.root.logger=WARN,console"
这仅暂时覆盖该作业的系统值。从log4j.properties文件检查确切的属性名称(此处为log4jspark.root.logger)。
希望这会有所帮助,加油!
答案 12 :(得分:1)
以下针对Scala用户的代码段:
选项1:
下面的代码段可以在文件级别添加
import org.apache.log4j.{Level, Logger}
Logger.getLogger("org").setLevel(Level.WARN)
选项2:
注意:这将适用于正在使用的所有应用程序 火花会议。
import org.apache.spark.sql.SparkSession
private[this] implicit val spark = SparkSession.builder().master("local[*]").getOrCreate()
spark.sparkContext.setLogLevel("WARN")
选项3:
注意:此配置应添加到您的log4j.properties中。(可能类似于/etc/spark/conf/log4j.properties(其中有spark安装)或项目文件夹级别的log4j.properties) 因为您要在模块级别进行更改。这将适用于所有应用程序。
log4j.rootCategory=ERROR, console
恕我直言,选项1是明智的选择,因为可以在文件级别将其关闭。
答案 13 :(得分:0)
我想继续使用日志记录(Python的日志记录工具),您可以尝试拆分应用程序和Spark的配置:
LoggerManager()
logger = logging.getLogger(__name__)
loggerSpark = logging.getLogger('py4j')
loggerSpark.setLevel('WARNING')
答案 14 :(得分:0)
编程方式
spark.sparkContext.setLogLevel("WARN")
可用选项
ERROR
WARN
INFO
答案 15 :(得分:0)
您也可以在程序开始时以编程方式设置它。
Logger.getLogger("org").setLevel(Level.WARN)