如何在Spark中关闭INFO日志记录?

时间:2014-08-07 22:48:59

标签: python scala apache-spark hadoop pyspark

我使用AWS EC2指南安装了Spark,我可以使用bin/pyspark脚本启动程序,以获得spark提示,也可以成功完成Quick Start quide。

但是,我不能为我的生活找出如何在每个命令之后停止所有详细的INFO日志记录。

我在以下代码中尝试了几乎所有可能的方案(注释掉,设置为OFF)在log4j.properties文件夹中的conf文件夹中,我在每个文件夹中启动了应用程序节点,什么也没做。执行每个语句后,我仍然会打印日志INFO语句。

我对这应该如何工作非常困惑。

#Set everything to be logged to the console log4j.rootCategory=INFO, console                                                                        
log4j.appender.console=org.apache.log4j.ConsoleAppender 
log4j.appender.console.target=System.err     
log4j.appender.console.layout=org.apache.log4j.PatternLayout 
log4j.appender.console.layout.ConversionPattern=%d{yy/MM/dd HH:mm:ss} %p %c{1}: %m%n

# Settings to quiet third party logs that are too verbose
log4j.logger.org.eclipse.jetty=WARN
log4j.logger.org.apache.spark.repl.SparkIMain$exprTyper=INFO
log4j.logger.org.apache.spark.repl.SparkILoop$SparkILoopInterpreter=INFO

当我使用SPARK_PRINT_LAUNCH_COMMAND时,这是我的完整类路径:

  

Spark命令:   /Library/Java/JavaVirtualMachines/jdk1.8.0_05.jdk/Contents/Home/bin/java   -cp:/root/spark-1.0.1-bin-hadoop2/conf:/root/spark-1.0.1-bin-hadoop2/conf:/root/spark-1.0.1-bin-hadoop2/lib/spark-组件-1.0.1-hadoop2.2.0.jar:/root/spark-1.0.1-bin-hadoop2/lib/datanucleus-api-jdo-3.2.1.jar:/root/spark-1.0.1-bin- hadoop2 / lib目录/ DataNucleus将核-3.2.2.jar:/root/spark-1.0.1-bin-hadoop2/lib/datanucleus-rdbms-3.2.1.jar   -XX:MaxPermSize = 128m -Djava.library.path = -Xms512m -Xmx512m org.apache.spark.deploy.SparkSubmit spark-shell --class   org.apache.spark.repl.Main

spark-env.sh的内容:

#!/usr/bin/env bash

# This file is sourced when running various Spark programs.
# Copy it as spark-env.sh and edit that to configure Spark for your site.

# Options read when launching programs locally with 
# ./bin/run-example or ./bin/spark-submit
# - HADOOP_CONF_DIR, to point Spark towards Hadoop configuration files
# - SPARK_LOCAL_IP, to set the IP address Spark binds to on this node
# - SPARK_PUBLIC_DNS, to set the public dns name of the driver program
# - SPARK_CLASSPATH=/root/spark-1.0.1-bin-hadoop2/conf/

# Options read by executors and drivers running inside the cluster
# - SPARK_LOCAL_IP, to set the IP address Spark binds to on this node
# - SPARK_PUBLIC_DNS, to set the public DNS name of the driver program
# - SPARK_CLASSPATH, default classpath entries to append
# - SPARK_LOCAL_DIRS, storage directories to use on this node for shuffle and RDD data
# - MESOS_NATIVE_LIBRARY, to point to your libmesos.so if you use Mesos

# Options read in YARN client mode
# - HADOOP_CONF_DIR, to point Spark towards Hadoop configuration files
# - SPARK_EXECUTOR_INSTANCES, Number of workers to start (Default: 2)
# - SPARK_EXECUTOR_CORES, Number of cores for the workers (Default: 1).
# - SPARK_EXECUTOR_MEMORY, Memory per Worker (e.g. 1000M, 2G) (Default: 1G)
# - SPARK_DRIVER_MEMORY, Memory for Master (e.g. 1000M, 2G) (Default: 512 Mb)
# - SPARK_YARN_APP_NAME, The name of your application (Default: Spark)
# - SPARK_YARN_QUEUE, The hadoop queue to use for allocation requests (Default: ‘default’)
# - SPARK_YARN_DIST_FILES, Comma separated list of files to be distributed with the job.
# - SPARK_YARN_DIST_ARCHIVES, Comma separated list of archives to be distributed with the job.

# Options for the daemons used in the standalone deploy mode:
# - SPARK_MASTER_IP, to bind the master to a different IP address or hostname
# - SPARK_MASTER_PORT / SPARK_MASTER_WEBUI_PORT, to use non-default ports for the master
# - SPARK_MASTER_OPTS, to set config properties only for the master (e.g. "-Dx=y")
# - SPARK_WORKER_CORES, to set the number of cores to use on this machine
# - SPARK_WORKER_MEMORY, to set how much total memory workers have to give executors (e.g. 1000m, 2g)
# - SPARK_WORKER_PORT / SPARK_WORKER_WEBUI_PORT, to use non-default ports for the worker
# - SPARK_WORKER_INSTANCES, to set the number of worker processes per node
# - SPARK_WORKER_DIR, to set the working directory of worker processes
# - SPARK_WORKER_OPTS, to set config properties only for the worker (e.g. "-Dx=y")
# - SPARK_HISTORY_OPTS, to set config properties only for the history server (e.g. "-Dx=y")
# - SPARK_DAEMON_JAVA_OPTS, to set config properties for all daemons (e.g. "-Dx=y")
# - SPARK_PUBLIC_DNS, to set the public dns name of the master or workers

export SPARK_SUBMIT_CLASSPATH="$FWDIR/conf"

16 个答案:

答案 0 :(得分:141)

只需在spark目录中执行此命令:

cp conf/log4j.properties.template conf/log4j.properties

编辑log4j.properties:

# Set everything to be logged to the console
log4j.rootCategory=INFO, console
log4j.appender.console=org.apache.log4j.ConsoleAppender
log4j.appender.console.target=System.err
log4j.appender.console.layout=org.apache.log4j.PatternLayout
log4j.appender.console.layout.ConversionPattern=%d{yy/MM/dd HH:mm:ss} %p %c{1}: %m%n

# Settings to quiet third party logs that are too verbose
log4j.logger.org.eclipse.jetty=WARN
log4j.logger.org.eclipse.jetty.util.component.AbstractLifeCycle=ERROR
log4j.logger.org.apache.spark.repl.SparkIMain$exprTyper=INFO
log4j.logger.org.apache.spark.repl.SparkILoop$SparkILoopInterpreter=INFO

在第一行替换:

log4j.rootCategory=INFO, console

由:

log4j.rootCategory=WARN, console

保存并重新启动shell。它适用于OS X上的Spark 1.1.0和Spark 1.5.1。

答案 1 :(得分:48)

受到pyspark / tests.py的启发我做了

def quiet_logs( sc ):
  logger = sc._jvm.org.apache.log4j
  logger.LogManager.getLogger("org"). setLevel( logger.Level.ERROR )
  logger.LogManager.getLogger("akka").setLevel( logger.Level.ERROR )

在创建SparkContext之后调用它会减少为我的测试从2647到163记录的stderr行。但是创建SparkContext本身会记录163,直到

15/08/25 10:14:16 INFO SparkDeploySchedulerBackend: SchedulerBackend is ready for scheduling beginning after reached minRegisteredResourcesRatio: 0.0

我不清楚如何以编程方式调整这些内容。

答案 2 :(得分:34)

编辑您的conf / log4j.properties文件并更改以下行:

   log4j.rootCategory=INFO, console

    log4j.rootCategory=ERROR, console

另一种方法是:

Fireup spark-shell并输入以下内容:

import org.apache.log4j.Logger
import org.apache.log4j.Level

Logger.getLogger("org").setLevel(Level.OFF)
Logger.getLogger("akka").setLevel(Level.OFF)

之后你不会看到任何日志。

答案 3 :(得分:32)

>>> log4j = sc._jvm.org.apache.log4j
>>> log4j.LogManager.getRootLogger().setLevel(log4j.Level.ERROR)

答案 4 :(得分:24)

对于PySpark,您还可以使用sc.setLogLevel("FATAL")在脚本中设置日志级别。来自docs

  

控制我们的logLevel。这将覆盖任何用户定义的日志设置。有效的日志级别包括:ALL,DEBUG,ERROR,FATAL,INFO,OFF,TRACE,WARN

答案 5 :(得分:21)

在Spark 2.0中,您还可以使用setLogLevel动态为您的应用程序配置它:

    from pyspark.sql import SparkSession
    spark = SparkSession.builder.\
        master('local').\
        appName('foo').\
        getOrCreate()
    spark.sparkContext.setLogLevel('WARN')

pyspark 控制台中,默认的spark会话已经可用。

答案 6 :(得分:13)

这可能是由于Spark如何计算其类路径。我的预感是Hadoop的log4j.properties文件出现在类路径上的Spark之前,阻止您的更改生效。

如果你跑

SPARK_PRINT_LAUNCH_COMMAND=1 bin/spark-shell

然后Spark将打印用于启动shell的完整类路径;就我而言,我看到了

Spark Command: /usr/lib/jvm/java/bin/java -cp :::/root/ephemeral-hdfs/conf:/root/spark/conf:/root/spark/lib/spark-assembly-1.0.0-hadoop1.0.4.jar:/root/spark/lib/datanucleus-api-jdo-3.2.1.jar:/root/spark/lib/datanucleus-core-3.2.2.jar:/root/spark/lib/datanucleus-rdbms-3.2.1.jar -XX:MaxPermSize=128m -Djava.library.path=:/root/ephemeral-hdfs/lib/native/ -Xms512m -Xmx512m org.apache.spark.deploy.SparkSubmit spark-shell --class org.apache.spark.repl.Main

其中/root/ephemeral-hdfs/conf位于类路径的头部。

我已经在下一个版本中打开an issue [SPARK-2913]来修复此问题(我应该尽快修补)。

与此同时,这里有几个解决方法:

  • export SPARK_SUBMIT_CLASSPATH="$FWDIR/conf"添加到spark-env.sh
  • 删除(或重命名)/root/ephemeral-hdfs/conf/log4j.properties

答案 7 :(得分:9)

您可以使用setLogLevel

val spark = SparkSession
      .builder()
      .config("spark.master", "local[1]")
      .appName("TestLog")
      .getOrCreate()

spark.sparkContext.setLogLevel("WARN")

答案 8 :(得分:7)

Spark 1.6.2:

log4j = sc._jvm.org.apache.log4j
log4j.LogManager.getRootLogger().setLevel(log4j.Level.ERROR)

Spark 2.x:

spark.sparkContext.setLogLevel('WARN')

(spark是SparkSession)

或者旧方法,

在Spark Dir中将conf/log4j.properties.template重命名为conf/log4j.properties

log4j.properties中,将log4j.rootCategory=INFO, console更改为log4j.rootCategory=WARN, console

可用的不同日志级别:

  • OFF(最具体,没有记录)
  • 致命(最具体,少量数据)
  • 错误 - 仅在出现错误时记录
  • 警告 - 仅在出现警告或错误时记录
  • INFO(默认)
  • DEBUG - 记录详细步骤(以及上述所有日志)
  • TRACE(最不具体,很多数据)
  • 所有(最不具体,所有数据)

答案 9 :(得分:5)

我在Amazon EC2上使用了1个master和2个slave以及Spark 1.2.1。

# Step 1. Change config file on the master node
nano /root/ephemeral-hdfs/conf/log4j.properties

# Before
hadoop.root.logger=INFO,console
# After
hadoop.root.logger=WARN,console

# Step 2. Replicate this change to slaves
~/spark-ec2/copy-dir /root/ephemeral-hdfs/conf/

答案 10 :(得分:1)

我这样做的方式是:

在我运行spark-submit脚本的位置

$ cp /etc/spark/conf/log4j.properties .
$ nano log4j.properties

INFO更改为您想要的任何级别的日志记录,然后运行spark-submit

答案 11 :(得分:1)

只需将以下param添加到您的spark-submit命令中

--conf "spark.driver.extraJavaOptions=-Dlog4jspark.root.logger=WARN,console"

这仅暂时覆盖该作业的系统值。从log4j.properties文件检查确切的属性名称(此处为log4jspark.root.logger)。

希望这会有所帮助,加油!

答案 12 :(得分:1)

以下针对Scala用户的代码段:

选项1:

下面的代码段可以在文件级别添加

import org.apache.log4j.{Level, Logger}
Logger.getLogger("org").setLevel(Level.WARN)

选项2:

  

注意:这将适用于正在使用的所有应用程序   火花会议。

import org.apache.spark.sql.SparkSession

  private[this] implicit val spark = SparkSession.builder().master("local[*]").getOrCreate()

spark.sparkContext.setLogLevel("WARN")

选项3:

  

注意:此配置应添加到您的log4j.properties中。(可能类似于/etc/spark/conf/log4j.properties(其中有spark安装)或项目文件夹级别的log4j.properties)   因为您要在模块级别进行更改。这将适用于所有应用程序。

log4j.rootCategory=ERROR, console
  

恕我直言,选项1是明智的选择,因为可以在文件级别将其关闭。

答案 13 :(得分:0)

我想继续使用日志记录(Python的日志记录工具),您可以尝试拆分应用程序和Spark的配置:

LoggerManager()
logger = logging.getLogger(__name__)
loggerSpark = logging.getLogger('py4j')
loggerSpark.setLevel('WARNING')

答案 14 :(得分:0)

编程方式

spark.sparkContext.setLogLevel("WARN")

可用选项

ERROR
WARN 
INFO 

答案 15 :(得分:0)

您也可以在程序开始时以编程方式设置它。

Logger.getLogger("org").setLevel(Level.WARN)